3. 为什么是数字广播?现有的 AM 和 FM 模拟系统存在固有缺陷,并且都无法在整个覆盖范围内提供均匀的接收质量。 AM 广播接收受到带宽限制(会限制音频质量)以及来自其他同信道和相邻信道传输的干扰的限制。这在夜间尤其麻烦。20 世纪 50 年代开始的 FM 服务提高了音频带宽并克服了夜间干扰,但广播被设计为使用带有外部天线的固定接收器接收。在车辆或便携式设备上收听时,接收会受到反射信号(多径)和其他形式干扰的影响,尤其是在郊区和城市地区。
摘要:GPU系统上的AI应用程序在过去10年中随着单芯片推理性能的增加而爆炸了1000倍。需要数以万计的数据中心连接的GPU来训练和推断最先进的生成AI模型。每一代的带宽密度需求增加了2倍。在这些系统的核心,处理器和交换机的核心中被用作2.5D和3D配置中的多个模具。在系统中这些模具之间的超高效互连需要支持整体系统带宽。此谈话将从电路,包装,电源输送和靶向能量效率的热管理范围<100fj/b和带宽密度> 10TBPS/mm的角度来研究最新的当前和未来电气和未来电气和光学芯片到芯片通信。
更改日志8入门9要求9许可10初始化Fortisase 11简介12使用FOTICLIENT 14 SWG无代理模式15专用公共IP地址15嵌入登机指南16 FORTIFLEX许可19所需的服务和端口19中的端口和端口19的签名24 iam用户识别24远程启用22远程启用22 external IdP users 25 Dashboards 26 Adding a custom dashboard 26 Resetting all dashboards 27 Drilling down on vulnerabilities 27 FortiView monitors 28 Adding a custom monitor 28 Resetting all monitors 29 Monitoring thin-edge bandwidth usage 29 Thin-Edge 31 Edge devices 33 FortiExtender 33 Prerequisites 33 Viewing notifications for a new FortiExtender 36 Configuring FortiExtender as FortiSASE LAN Extension 37 Fortigate 45先决条件46查看新的Fortigate 47将Fortigate配置为Fortigate fortigate 47 Fortiap 50 50先决条件50查看新的Fortiap 52 52将Fortiap配置为Fortisase Edge设备52 SD-WAN RAMP 65
• M-PHY v.6.0(预计 2025 年推出)-> 带宽增加(至 46.694 Gbps)和传输增强 • UniPro v3.0(计划正在审核中)-> 更新以支持 M-PHY v6.0 提供的传输增强
“如果它变得非常技术性,那么我们去Wikborg Rein。他们很棒。他们为金钱和非常好的服务提供了非常好的价值。他们确实具有您需要的带宽和能力。”
数字通信:PCM,DPCM,数字调制方案(ask,PSK,FSK,QAM),带宽,符号间干扰,MAP,ML检测,匹配的过滤器接收器,SNR和BER
敏感传感器、全光开关和可重构分插滤波器[5-7]。前期工作中,利用微环谐振器(MRR)的对称谐振特性,已经制作出许多带宽可调的器件[8-12]。例如,一种是基于单个微环谐振器的滤波器,其谐振器的耦合系数由微机电系统调整。然而,要实现 MEMS 可调谐性,需要施加近 40 V 的高驱动电压 [5]。另一种也是基于单个微环谐振器的滤波器 [13]。其谐振器的耦合系数由热光移相器调整。这种滤波器的缺点是带宽变化范围有限,带外抑制性能较差。还有一种结合了 MZI 和环形谐振器的滤波器,环形谐振器嵌入 MZI 臂中,其带宽调谐受到带内纹波和插入损耗的限制 [14]。在本文中,我们展示了一种基于环形谐振器和具有 Fano 谐振的 MZI 的带宽可调光学滤波器。它由两个单个 MRR 和一个由两个 1 9 2 多模干涉 (MMI) 构成的 MZI 结构组成。两个单个 MRR 的耦合系数均由热光移相器调谐。在这种新设计中,由两个 TiN 加热器控制的两个 MRR 可用于产生额外的相位以打破正常 MRR 的对称洛伦兹形状。通过两个不对称洛伦兹形状的叠加可以观察到 Fano 谐振,并且 3 dB 通带明显增宽。利用硅的热光(TO)特性,带宽范围从0.46到3.09nm,比以前的器件更宽。输出端口的消光比大于25dB,自由光谱范围(FSR)为9.2nm,适合光电集成电路中的传输。众所周知,通过端口3dB,带宽是一个重要的
摘要:如今,放大器是一种功率增益更大的器件。它是现代电子器件的基础,广泛应用于几乎所有电子设备。共源共栅放大器是各种有用电路的关键元件。它具有带宽增加、转换速率高、增益高、输入阻抗适中和输出阻抗较高的优点。循环折叠共源共栅放大器 (RFCA) 的参数比传统折叠放大器 [1] 有所改进。这是通过使用信号路径中空闲设备的先前电路来实现的,从而提高了跨导、增益和转换速率 [1]。共源共栅级由共栅极和共源极端子组成。互补折叠共源共栅放大器 (CFCA) 是镜像配置电路,可节省功率并具有更高的稳定点。转换速率允许最大频率高于范围,从而消除任何潜在错误和不需要的信号。转换速率高于 6.3V/µs 的电路似乎最常用。单位增益带宽可用来放大信号,更宽的带宽可以消除较小的信号。关键词:循环折叠共源共栅 (RFC)、互补折叠共源共栅 (CFC)、折叠共源共栅放大器 (FCA)。
高级驱动程序辅助系统中当前使用的计算机视觉算法依赖于基于图像的RGB摄像机,从而实现了至关重要的带宽 - latatency折衷,以提供安全的驾驶体验。为了解决这个问题,事件摄像机已成为替代视觉传感器。事件摄像机测量强度不同步的变化,提供了高的时间分辨率和稀疏性,显着降低了带宽和潜伏要求1。尽管有这些优势,但基于事件相机的算法在准确性方面还是高效,但要么落后于基于图像的算法,要么牺牲事件的稀疏性和效率以获得可比的结果。为了克服这一点,我们在这里提出了一个基于混合事件和框架的对象检测器,该对象检测器保留了每种方式的优势,因此并不遭受这种权衡。我们的方法利用了事件的高时间分辨率和稀疏性以及标准图像中富裕但低的时间分辨率信息,以生成有效的高速对象检测,从而减少感知和计算潜伏期。我们表明,使用20帧每秒(FPS)RGB摄像头和事件摄像机的使用可以达到与5,000-FPS摄像机相同的延迟,而具有45-FPS摄像机的带宽而不会损害精度。我们的方法通过发现事件摄像机2的潜力,为在边缘场景中有效和强大的感知铺平了道路。