ATOPLEX METABARCODING用户手册为MGI定制产品平台上的测序进行多个PCR扩增提供了指导。荟萃编码通常用于物种分类,丰度分析和各种生物样品的比较研究。The barcodes frequently used for biodiversity assessment include prokaryotic 16S ribosomal DNA (for bacteria and archaea), eukaryotic 18S ribosomal DNA (for diverse eukaryotes such as plants, protists, and fungi), eukaryotic ITS ribosomal DNA (for fungi), mitochondrial COI gene (for a wide range of eukaryotes including animals and生物)和线粒体12S DNA(专门针对鱼)。This user manual is only applicable to the use of the library construction products described in this document: ATOPlex 16S V3V4 rDNA Primer Pool, ATOPlex 18SV4 rDNA Primer Pool, ATOPlex ITS1 rDNA Primer Pool, ATOPlex COI mtDNA Primer Pool, ATOPlex Ac12S mtDNA Primer Pool, ATOPlex MiFish Primer Pool, and ATOPlex DNA Dual Barcode Library Preparation测序套件。
a: Naturalis Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands 10 b: Department of Environmental Biology, Institute of Environmental Sciences (CML), Leiden University, 11 Einsteinweg 2, 2333 CC Leiden, The Netherlands 12 c:National Research Council of Italy (CNR), Water Research Institute (IRSA), Largo Tonolli 50,28922,Verbania 13意大利Pallanza,14 D:塞浦路斯海洋和海事研究所,CMMI House,CMMI House,CMMI House,Vasileos Pavlou Square,6023,Larnaca,Larnaca,Larnaca,Larnaca,Cyprus 15 E:化学工程系:塞浦路斯大学,塞浦路斯大学,塞浦路斯大学,塞浦路斯大学,3036年3036,Limassol,塞浦路斯,塞普鲁斯16 F:萨萨里(Sassari),通过维也纳2,07100意大利萨萨里(Sassari)17 g:国家生物多样性未来中心(NBFC),皮亚齐扎·玛丽娜(Piaziza Marina)61,90133意大利巴勒莫(90133意大利)18 H:生物多样性,生态学和进化系,co/joséniosprid,c/joséniosprids coptridense de Madrid spriidence de Madeanio sprid sprids spernio and novrid Antid andrid,28040404040。20 I:瑞典自然历史博物馆,动物学系,POB 50007,SE-104 05斯德哥尔摩,瑞典21 J:生物学,地质学和环境科学系。田纳西大学查塔努加大学。电子邮件:jan.macher@naturalis.nl 33615 22 McCallie Ave, Chattanooga, TN, 37403, USA 23 k:Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 24 Videnska 1083, 142 20 Prague, Czech Republic 25 l:Department of Ecology, Charles University, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic 26 m:Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark 27 n:Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 213/D, 41125 Modena, 28 Italy 29 o:Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH 30 Amsterdam,荷兰31 32 *通讯作者。
监测粪便社区的传统方法是劳动和专业知识密集的,并且通常效率低下。最近,非侵入性环境DNA(EDNA)元法编码已被试用,用于粪便相关无脊椎动物的生物监测(Sigsgaard等。,2021年)。结果是有希望的,有几个官能团,并且生态关联很明显。在这里,我们使用类似的EDNA技术进行了一个小型试点项目,以评估使用牲畜粪便样品监测英国牧场的粪甲虫和更广泛的无脊椎动物社区。该项目的成功可以证明粪便无脊椎动物DNA调查的倾向,以监测土壤管理实践和再生耕作的影响,从而导致土壤生物多样性增加。
fi g u r e 1系统发育关系和pelophax Mitroups在西改变(WP)中的分布。分类名称将在可用时给出(表S1)。地图结合了来自六个基因的条形码信息;阴影区域:大概是本地分布(一些东部范围可能反映了旧的介绍; Kuzmin,1999);箭头:引入人群的基因分型。插图映射在巴尔干半岛(左上),坎奇特卡半岛(右上角)和亚速尔群岛(左下)。pelophylax ridibundus中的Mitroup分布如图2所述。树显示了对全部和部分有丝分裂组的贝叶斯分析(〜16.8 kb);有关末端分支,请参见图S1和最大样品分析;节点圆说明分支支持;灰色线(树的底部)表明基于核系统基因组的撒哈拉s b(Doniol-Valcroze等,2021;另见图4)。天然范围是根据GBIF(www。Gbif。Org)和MNHN(https://inpn。mnhn。fr)的出现数据修改的IUCN红色列表(2023)。
用于递送 mRNA 疗法的脂质纳米粒子对治疗多种肺部相关疾病具有巨大前景。然而,缺乏能够识别化学上不同的脂质库的肺部递送谱的有效方法,对 mRNA 疗法的进步构成了重大障碍。在这里,我们报告了一种条形码高通量筛选系统的实施,作为识别阳离子可降解脂质类材料的肺靶向功效的一种手段。我们组合合成了 180 种阳离子可降解脂质,最初在体外进行筛选。然后,我们使用条形码技术来量化选定的 96 种不同的脂质纳米粒子如何在体内递送 DNA 条形码。性能最佳的纳米颗粒制剂可递送基于 Cas9 的基因编辑器,在雌性小鼠的肺癌模型中表现出抗血管生成癌症治疗的治疗潜力。这些数据表明,采用高通量条形码技术作为筛选工具来识别具有肺向性的纳米颗粒,为开发下一代肝外递送平台提供了潜力。
通过分析印度泰米尔纳德邦的Costa de Chennai渔港收集的标本的DNA棒法规。 div>测序了具有650 bp区域的细胞色素线粒体氧化酶(MTCOI)的亚基I基因,用于系统发育分析。 div>在此记录中,线粒体基因序列用于鉴定螳螂虾。 div>这是印度水域中DNA棒法规的第一个确认记录,其MTCOI序列沉积在Genbank中。 div>邻居加入方法用于遗传边缘分析。 div>用五个密切相关的物种计算出的遗传距离在0.01至0.094%之间。 div>形态学和分子分析证实,收集的副本对应于Maculata。 div>
莫桑比克的鱼类学省份是全球鱼类分歧的热点。在这项研究中,我们应用了DNA条形码,以鉴定莫桑比克海岸的鱼类动物的组成。确定了143种属于104属,59个家庭和30个命令的物种。Species内COI序列的总体K2P距离范围为0.00%至1.51%,而种间距离范围为3.64%至24.49%。此外,根据IUCN红色的受威胁物种的红色清单,露出15种受威胁物种,其中弹性分支是最有代表性的群体。另外,该研究还发现了以前在该地理区域中未记录的四个新物种,包括Boleophthalmus dussumieri,Maculabatis Gerrardi,Hippocam-pus kelloggi和Miniatus。这项研究代表了利用分子参考来探索莫桑比克沿岸的鱼类动物区系的第一个实例。我们的结果表明,DNA条形码是对莫桑比克水域中鱼类鉴定和描述的可靠技术。本研究中建立的DNA条形码库将是促进对鱼类多样性和指导未来保护计划的理解的宝贵资产。
鹿产品 elaphus)被认为是真正的中国中药(TCM)材料。 鹿具有很高的经济和装饰价值,导致形成了特征性的鹿行业,以在中医,健康食品,宇宙和其他发展和利用领域的处方准备中形成。 由于对鹿生产的需求量很高,产品昂贵且生产有限,但合法使用鹿只限于两种Sika Deer和Red Deer;禁止其他野鹿狩猎,因此有许多伪造产品的混合和掺假案例等。 有很多报道说其他动物(猪,牛,绵羊等) 组织或器官通常用于掺假和混乱,导致鹿传统医学和鹿产品中贸易欺诈的功效不佳。 以快速有效的方式对鹿产物进行身份验证,该分析使用了22种鹿产品(鹿角,肉,骨骼,胎儿,阴茎,尾巴,皮肤和羊毛),它们是盲型样品的形式。 使用修饰方案的总DNA提取,成功地从盲样品中得出了对PCR有用的DNA。 通过BLAST和系统发育聚类分析评估了三个候选DNA条形码基因座,COX1,CYT B和RRN12的歧视强度。 在爆炸分析中,22个盲样品在经过测试的三个基因基因座中获得了100%匹配的身份。 日本和七个被认为起源于西卡鹿的盲样样本被确定为c。elaphus)被认为是真正的中国中药(TCM)材料。鹿具有很高的经济和装饰价值,导致形成了特征性的鹿行业,以在中医,健康食品,宇宙和其他发展和利用领域的处方准备中形成。由于对鹿生产的需求量很高,产品昂贵且生产有限,但合法使用鹿只限于两种Sika Deer和Red Deer;禁止其他野鹿狩猎,因此有许多伪造产品的混合和掺假案例等。有很多报道说其他动物(猪,牛,绵羊等)组织或器官通常用于掺假和混乱,导致鹿传统医学和鹿产品中贸易欺诈的功效不佳。以快速有效的方式对鹿产物进行身份验证,该分析使用了22种鹿产品(鹿角,肉,骨骼,胎儿,阴茎,尾巴,皮肤和羊毛),它们是盲型样品的形式。使用修饰方案的总DNA提取,成功地从盲样品中得出了对PCR有用的DNA。通过BLAST和系统发育聚类分析评估了三个候选DNA条形码基因座,COX1,CYT B和RRN12的歧视强度。在爆炸分析中,22个盲样品在经过测试的三个基因基因座中获得了100%匹配的身份。日本和七个被认为起源于西卡鹿的盲样样本被确定为c。据揭示了12个盲样样品的原始种类正确标记了,而三个被认为起源于红鹿的盲样样品被鉴定为c。Elaphus,Dama Dama和Rangifer Tarandus。DNA条形码分析表明,所有三个基因座都能够区分这两个脑物种并识别出掺假物质的存在。DNA条形码技术能够在识别鹿产物中的原点物种方面提供了一种有用的敏感方法。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2024年1月26日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2023.05.04.539402 doi:Biorxiv Preprint
stelliferinae是Sciaenidae的第三大特定亚科,有51种公认的物种排列在五个属中。从形态学和分子数据中得出的系统发育支持该亚科的单性别,尽管对该群体的属间关系或物种多样性尚无一般共识。我们使用了细胞色素氧化酶C亚基I(COI)基因的条形码区域来验证基于自动条形码间隙发现(ABGD),广义混合Yule Yule ColeScence(GMYC)和Bayesian Poisson Tree Process(BPTP)方法的基于自动条形码间隙发现(ABGD)的界定物种的界定。在一般中,这些不同方法的结果是一致的,划定了30-32个分子操作分类单元(MOTUS),其中大多数与有效物种相吻合。标志性的Menezesi和Stellifer Gomezi的标本归因于一种物种,这与该属的最新评论不同意。证据还表明,odon-toscion xanthops和corvula宏观属于单个MOTU。相比之下,证据还表明在牙肠牙本质和Bairdiella Chrysoura中都存在明显的谱系。这种结果与神秘物种的存在兼容,这是由遗传差异和单倍型谱系支持的。因此,本研究的结果表明,标志性的存在中未描述的多样性,这加剧了对这种亚科中鱼类的大量分类学复习的需求。