Pinaka Project(多桶火箭发射器)Pinaka多桶火箭发射系统是全天气,间接火,免费的飞行火炮火箭系统。它以高速率比延长的范围发出准确而巨大的火力。一部6个发射器的电池可以在44秒内发射72枚火箭的Salvo。以致命的弹头形式以超过7.2音调的有效载荷可以传递至38公里的范围,并且可以有效地中和1000 mm x 800 mm的目标面积。完整的系统包括以下内容:
摘要 :在任何 ALU 的设计中,移位寄存器通常用于执行加法(用于进位移动)、乘法和任何浮点算术。当前使用的移位寄存器由触发器组成,需要 n 个时钟脉冲进行 n 次移位,这会增加延迟。因此,我们的目标是设计一个高速移位寄存器,即桶形移位器,它需要一个时钟脉冲进行 n 次移位。在本文中,我们使用通用门(传统模型)和传输门,在 Cadence Virtuoso 工具中为 180nm 和 45nm 技术设计了三种类型的桶形移位器电路,分别称为左旋转器、右旋转器和双向旋转器。与传统设计相比,45nm 技术中带有传输门的桶形移位器电路需要的功率更低,晶体管数量也更少。设计的桶形移位器电路比文献中已经提出过的传统模型具有更好的性能。
v3 具有全面的测试程序:台式和测试光束、辐照、NASA 有效载荷任务(A-STEP)的四芯片读数、与 ePIC 的 Pb/SciFi 集成(研发研究和测试文章生产)
Flow 部门专门为客户的工艺提供专门设计的泵送解决方案。我们提供通过深入研究和开发流体动力学和先进材料而开发的泵、搅拌器、压缩机、研磨机、筛网和过滤器。我们是水、石油和天然气、电力、化学品和大多数工业领域泵送解决方案的市场领导者。
半个世纪以来,普通实验室啮齿动物的桶状皮层一直是研究地形图,神经图案和可塑性的形成,在发育和成熟度中的形成非常有用。我们介绍了关于桶的发现方式的历史观点,以及此后如何成为发展性神经科学家的主力,并研究了大脑可塑性和脑电路的活动依赖性建模。对这种感觉系统的特殊值得注意的是一种细胞模式,它是由源自鼻须围绕的感觉受体得出的信号引起的,并以中央传播到脑干(桶形),丘脑(枪管)(枪管)(枪管)和新皮层(桶)。出生后不久对感觉受体的损伤会导致系统的所有级别可预测的模式改变。小鼠遗传学增加了我们对枪管的构造方式的理解,并揭示了将轴突生长和细胞规范的分子程序的相互作用以及活性依赖性机制。对这种感觉系统作为一种神经生物学模型存在着不断提高的兴趣,该模型在形态学和生理水平上都研究了体体,模式和可塑性的发展。本文是纪念神经科学学会50周年的一组文章的一部分。
皮质回路中的计算在高级脑功能中起着根本性的作用。最近的技术进步极大地促进了对细胞类型特异性皮质突触回路的结构和连接及其在小鼠执行简单的目标导向感觉知觉任务中的功能的定量描述。对皮质回路如何处理感觉信息的机制理解需要详细的生物物理计算建模,从而需要越来越精确的数据。通过对结构、功能和模拟的综合研究,神经科学家现在能够研究皮质计算的因果机制。研究神经回路结构与功能关系的一个关键模型系统是小鼠桶状皮质,它处理来自鼻子 1 周围的胡须阵列的触觉感觉信息(图 1A)。自 1970 年 Thomas Woolsey 和 Hendrik van der Loos 发现桶状皮层以来,对其进行了 50 年的研究。2 我们在此讨论桶状皮层电路的结构、功能和模拟的未来研究途径,需要将这些研究途径整合起来,以建立行为结构与功能关系的因果关系。
每只大鼠用聚氨酯(1.2 mg/kg)腹膜内麻醉,然后将大鼠的头部固定在立体定位框架中。使用牙科钻头暴露和去除左顶叶皮层。使用伺服控制的加热垫,将体温设置为37°C。在改变麻醉深度时,使用氨基甲酸酯初始剂量的10%用于控制晶须和不规则呼吸的自发运动。通过微驱动器(美国WPI,美国)将钨微电极(1-3MΩ,FHC)垂直插入枪管皮层的后侧内侧。所有单元均记录从600到1000毫米的皮质的深度记录。放大器的带通为0.3-10 kHz,一个前置放大的信号。获得的数据保存在计算机(伊朗科学梁)上。神经元电活动被视为单个单元的活性,其信号噪声比至少为3:1。然后使用一个窗口歧视器的离线分散器来隔离每个神经元(8、21、22)。
摘要的分期夹带被认为可以在全球范围内坐落在不同结构(例如海马和新皮层)跨不同结构的活性。在识别和决策过程中,最佳处理感觉输入可能需要此协调。In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (DHC)。大鼠区分以仅触觉,仅视觉或触觉和视觉方式呈现的两个3D对象。在任务参与期间,S1BF,V2L,PER和DHC LFP信号显示出连贯的theta波段活性。我们发现单细胞尖峰活性的相位夹带到S1BF,V2L,PER和DHC中的局部记录以及海马theta活性。虽然在任务试验的持续时期期间发生海马尖峰的阶段夹带发生在局部theta振荡中,并且对行为和模态的行为和模态,体感和视觉皮质细胞无可置疑,仅在刺激效果期间被置于刺激期间,主要是在其首选模式中(S1BF,触觉,crossit crossit; v2;刺激表现(S1BF:Visual; V2L:触觉)。这种效果无法通过发射速率或theta振幅的调制来解释。因此,海马细胞是长时间时期的相夹具,而感觉和周围神经元在感觉刺激呈现过程中被选择性地夹住,为活动协调提供了短暂的时间窗口。
“裂解价差”是指衡量轻质产品和原油价格差异的一种简化计算方法。例如,我们参考 (a) 2-1-1 裂解价差,这是我们特拉华市、保尔斯伯勒和查尔梅特炼油厂采用的一般行业标准,近似于加工两桶原油生产一桶汽油和一桶取暖油或 ULSD 所得的每桶炼油利润;(b) 4-3-1 裂解价差,这是我们托莱多和托伦斯炼油厂采用的基准,近似于加工四桶原油生产三桶汽油、半桶航空燃油和半桶 ULSD 所得的每桶炼油利润;以及 (c) 3-2-1 裂解价差,这是我们马丁内斯炼油厂采用的基准,近似于加工三桶原油生产两桶汽油、四分之三桶航空燃油和四分之一桶 ULSD 所得的每桶炼油利润。