建筑部门在所有部门的运营能源消耗和温室气体排放中的份额最高。许多国家设定的环境目标迫使需要改善现有建筑股票的环境足迹。建筑改造被认为是该方向的最有希望的解决方案之一。在本文中,提出了用于评估必要的建筑包络和能源系统改造的替代模型。人工神经网络被利用以建立此模型,以在准确性和计算成本之间取得良好的平衡。对所提出的模型进行了培训和测试,用于瑞士苏黎世市的案例研究,并将其与使用构建模拟和优化工具的建筑改造最先进的模型之一进行了比较。替代模型在较小的输入集上运行,而推导改造溶液所需的时间从3.5分钟减少到16.4μsec。结果表明,所提出的模型可以显着降低计算成本,而无需大多数改造维度的误差准确性。例如,改装成本和能源系统SE部门的平均精度为r 2 = 0。9408和F 1得分= 0。9450。最后,重要的是,这种替代改造模型可以有效地用于宽面积的自下而上的改造分析,并有助于加速采用改造措施。
由于 III-N 材料体系的独特性质,AlGaN/GaN 基异质结构可用于制造高电流 (> 1 A/mm [1, 2]) 和高功率 (> 40 W/mm [1]) 的高电子迁移率晶体管和肖特基势垒二极管等器件。此类结构中二维电子气 (2DEG) 浓度的典型值为 N s = 1.0–1.3·10 13 cm -2,电子迁移率 μ ~ 2000 cm 2 V -1 s -1 。通过增加势垒层中的 Al 摩尔分数进一步增加浓度会受到应变弛豫的阻碍 [3]。此外,当 2DEG 密度增加时,2DEG 迁移率通常会大幅下降 [4],因此电导率保持不变甚至变得更低。使用具有多个 2DEG 的多通道设计的结构可能是实现更高电导率的替代方法 [5, 6]。有关 GaN 多通道功率器件的进展、优点和缺点的更多详细信息,请参阅最近的评论文章 [6]。这种设计能够在不降低迁移率的情况下增加总电子浓度。然而,强的内部极化电场会导致导带能量分布发生显著改变,因此一些无意掺杂的结构的通道可能会完全耗尽,总电导率会明显低于预期。另一方面,向势垒层引入过多的掺杂剂可能会导致寄生传导通道的形成。因此,需要优化设计。在本文中,我们研究了单通道和三通道 AlGaN/AlN/GaN 异质结构的设计对其电学性能的影响。
增材制造工艺在工业领域越来越重要。特别是直接金属沉积 (DMD) 是一种很有前途的制造技术,因为它可以实现广泛的应用,例如从头开始制造零件、在传统加工的原始零件上添加材料,甚至高效修复高价值零件 [1]。除了许多优点外,该工艺的可控性仍然很困难,导致内部缺陷、几何偏差或微观结构不均匀。相变、粉末-气体动力学和参数不确定性等多种物理现象会影响工艺行为并使工艺处理复杂化。因此,需要进行大量的实验活动来确定具有可接受几何和材料性能的工艺参数
为了推进基于学习的融化算法的研究,已经开发了各种合成雾数据集。但是,现有的数据集使用大气散射模型(ASM)或十个实时渲染引擎而努力产生光真实的雾图像,以准确模仿实际的成像过程。这种限制阻碍了模型从合成到真实数据的有效概括。在本文中,我们引入了旨在生成照片现实的雾图图像的端到端模拟管道。该管道全面构建了整个基于物理的雾化场景成像,与现实世界图像捕获的方法紧密相位。基于此管道,我们提出了一个名为Synfog的新合成雾数据集,该数据集具有天空和主动照明条件以及三个级别的雾气状态。实验结果表明,与其他人相比,在与其他模型中相比,与其他人相比,在synfog上训练的模型在视觉感知和检测准确性方面表现出了较高的性能。
出版商的陈述,这是作者的作品版本,该作品被接受以供可再生能源出版。由出版过程产生的变化,例如同行评审,编辑,校正,结构格式和其他质量控制机制,可能不会反映在本文档中。自从提交出版以来,可能已经对这项工作进行了更改。随后发表了一个确定的版本,以可再生能源(157,(2020))https://doi.org/10.1016/j.renene.2020.05.024
图 28:排放侧 2D 发生频率(调制频率与风力涡轮机转速)......................................................................................... 59 图 29:调制深度与输出辐射(SA 2 顶部,SA 4 底部)........................................ 64 图 30 按风向和输出分类的频率分布 Δ L AM,SA 1 至 SA 4 ............................................................................................. 65 图 31 按风向和风速分类的频率分布 Δ L AM,SA 5 ............................................................................................................. 66 图 32:SA 1 中排放范围内的调制深度与剪切参数......................................................................................................... 67 图 33:SA 2 中辐射范围内的调制深度与剪切参数......................................................................................................... 68 图 34:有风力涡轮机的高速公路沿线 10 Hz 噪声曲线比较......................................................................................................... 69 图 35:AM 方法与最大周期性噪声级方法的比较(SA 2)............................................................................................. 70 图 36:AM 方法与最大周期性噪声级方法的比较(SA 4)............................................................................................. 71 图 37:AM 方法与最大周期性噪声级方法的比较(SA 5)......................................................................................... 71 图 38:接地板上的次声麦克风 ............................................................................. 73 图 39:带有单独线条的声压谱 ............................................................................. 74 图 40:带有单独线条的声压谱,放大 ............................................................. 75 图 41:随时间变化的声压级曲线 ............................................................................. 78 图 42:SA 5 中 G 加权级的频率分布 ............................................................. 79 图 43:SA 5 中 3 Hz 以内的频带级的频率分布 ............................................................. 80 图 44:SA 5 中 4 至 7 Hz 以内的频带级的频率分布 ............................................................. 80 81 图 46: SA 5 中 25 至 80 Hz 频带的声级频率分布 .............................................. 81 图 47: SA 5 中 A 加权声级的频率分布 .............................................................. 83 图 48: SA 5 中 125 Hz 频带的声级频率分布 ............................................................. 84 图 49: SA 5 中可听声音范围内的三分之一倍频程频谱 ............................................................. 85 图 50:可听声音与次声的声级 ............................................................................. 86 图 51:接地板测量和三脚架测量 ............................................................................................................................................. 87 图 52:不同风速下差异频谱(三脚架-接地板)的 80% 百分位数 ............................................................................................. 88 图 53:低负载、中负载和大负载测得的三分之一倍频程频谱,SA 5 ............................................................................................. 92 图 54:为额定输出时背景和风力涡轮机计算的三分之一倍频程频谱,SA 1 ............................................................................. 93 图 55:为额定输出时背景和风力涡轮机计算的三分之一倍频程频谱,SA 2 ............................................................................. 94
基于流量的超分辨率(SR)模型在生成高质量图像方面具有令人惊讶的功能。然而,这些方法在图像产生过程中遇到了几个challenges,例如网格伪像,进行倒置和由于固定的Sam固定温度而导致的次优结果。为了克服这些问题,这项工作涉及基于流量SR模型的推断阶段之前学到的条件。此先验是我们所提出的潜在模块预测的潜在代码,该模块在低分辨率图像上进行了条件,然后将流量模型转换为SR图像。我们的框架被签署为与任何基于当代流量的SR模型无缝集成,而无需修改其体系结构或经过预先训练的权重。我们通过广泛的实验和ABLATION分析来评估我们提出的框架的有效性。所提出的框架成功地为所有固有的问题结合了基于流的SR模型,并在各种SR场景中提高了其性能。我们的代码可在以下网址提供:https://github.com/ liyuantsao/flowsr-lp
范可尼贫血 (FA) 是一种使人衰弱的遗传性疾病,具有多种严重症状,包括骨髓衰竭和癌症易感性。CRISPR-Cas 基因组编辑通过利用 DNA 修复来操纵基因型,并已被提议作为 FA 的潜在治疗方法。但 FA 是由 DNA 修复本身的缺陷引起的,从而阻止使用同源定向修复等编辑策略。最近开发的碱基编辑 (BE) 系统不依赖于双链 DNA 断裂,可能用于靶向 FA 基因中的突变,但这仍有待测试。在这里,我们开发了一种概念验证治疗性碱基编辑策略,以解决患者造血干细胞和祖细胞中最常见的两种 FANCA 突变。我们发现,优化腺嘌呤碱基编辑器构建体、载体类型、向导 RNA 格式和递送条件可在多种 FA 患者背景中产生非常有效的基因修饰。优化的碱基编辑恢复了 FANCA 表达、FA 通路的分子功能以及对交联剂的表型抗性。ABE8e 介导的编辑在 FA 患者的原代造血干细胞和祖细胞中既具有基因型有效性,又恢复了 FA 通路功能,表明碱基编辑策略在未来 FA 临床应用中具有潜力。
血色素沉着症是白人种群中最常见的遗传代谢疾病之一,主要起源于HFE基因中的纯合C282Y突变。g>在基因的845位置的转变会导致HFE蛋白的折叠折叠,最终导致其在细胞膜上不存在。因此,与转素受体1和2缺乏相互作用导致系统性铁超载。我们在高度精确的细胞培养分析中筛选了潜在的GRNA,并应用了表达腺嘌呤基础编辑器ABE7.10的AAV8拆分矢量,并在129- HFE TM.1.1.1NCA小鼠中筛选了我们的候选GRNA。在这里,我们表明我们的治疗载体单次注射导致基因校正率> 10%,并且肝脏中铁代谢的改善。我们的研究提出了针对影响人类最常见的遗传疾病之一的靶向基因矫正疗法的概念验证。
蛋白质发现扩展到基因编辑和治疗应用 加州南旧金山(2020 年 1 月 30 日)Mammoth Biosciences 是世界上第一个基于 CRISPR 的疾病检测平台背后的公司,今天宣布其 B 轮融资获得 4500 万美元超额认购。此次融资由德诚资本领投,Mayfield、NFX、Verily 和 Brook Byers 参投,使公司的融资总额超过 7000 万美元。这笔资金将推动该公司进一步开发 CRISPR 诊断和下一代 CRISPR 产品,同时该公司将其平台扩展到包括基因编辑和下一代治疗方法。Mammoth 还在探索与生物技术和制药公司的深度合作,以利用 Mammoth CRISPR 平台改变医疗保健并造福患者。CRISPR 在治疗疾病方面具有巨大的前景,Cas9 的临床试验已经在进行中——这是将 CRISPR 从实验室带入日常生活的关键一步。但是,尽管这种酶在体外环境中显示出成功的初步迹象,但在体内应用方面仍然存在挑战,限制了 Cas9 在广泛疾病领域的广泛应用。此外,Cas9 不能用于基于 CRISPR 的诊断,这是 Cas 系统的一个新兴和突破性应用。Mammoth 凭借其广泛的新型 Cas 系统组合,在克服这些障碍方面具有独特的优势,这些系统可作为诊断、基因编辑和治疗应用的工具箱。4500 万美元的 B 轮融资将推动 CRISPR 平台的开发,特别关注 Mammoth 发现的 Cas14。Cas14 是一种独特的酶,由于其极小的尺寸、多样化的靶向能力和高保真度,开辟了新的可能性。这些特性将使 Mammoth 能够实现下一代编辑,在体外和体内应用中具有更广泛的靶标范围,并为实现先进的 CRISPR 模式(如靶向基因调控、精确编辑等)奠定基础。最近,包括 Casebia(拜耳与 CRISPR Therapeutics 的合资企业)前联合创始人 Peter Nell 和 Synthego 和 Bio-Rad 前高管 Ted Tisch 在内的业内资深人士分别以首席商务官和首席运营官的身份加入了该公司,以加速公司的发展。Grail 联合创始人、前 Illumina 董事会成员 Jeff Huber 已加入公司董事会担任独立董事,斯坦福大学医学院院长 Lloyd Minor 已加入 Mammoth 顾问委员会。Mammoth Biosciences 首席执行官兼联合创始人 Trevor Martin 解释说:“作为 CRISPR 发现前沿的团队,我们亲眼目睹了对新工具的需求,以实现这项技术所提供的治疗和诊断前景。通过为诊断以外的新产品提供支持,我们正在使
