允许将本工作的全部或一部分供个人或课堂使用的数字或硬副本授予,而没有费用,只要副本不是盈利或商业优势,并且副本带有此通知和首页上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新出版以在服务器上发布或重新分配到列表,需要事先特定的许可和/或费用。请求权限从permissions@acm.org。AutomotiveUI '18兼职,2018年9月23日至25日,加拿大安大略省多伦多©2018版权所有由所有者/作者持有。出版权许可获得ACM的权利。ACM 978-1-4503-5947-4/18/09…$ 15.00 https://doi.org/10.1145/3239092.3267418ACM 978-1-4503-5947-4/18/09…$ 15.00 https://doi.org/10.1145/3239092.3267418
格陵兰岛在公元86年至1997年的2厘米分辨率下,年度为NS1-2011年年表。Pangea,272 https://doi.org/10.1594/pangaea.940553; Colle Gnifetti:Sigl,Michael;艾布拉姆(Nerilie J)加布里里(Jacopo);詹克(Jenk),273西奥(Theo M);奥斯蒙特,迪米特里; Schwikowski,Margit(2018):Black Carbon(RBC),Bismuth,Lead和274个从1741年至2015年的公元174个年度记录,来自Colle Gnifetti Ice Core(瑞士/意大利阿尔卑斯山)。Pangea,275 https://doi.org/10.1594/pangaea.894785;山Elbrus:doi:10.5194/acp-17-3489-2017;通过加拿大极地数据目录:TTPS://www.po- 277 lardata.ca/pdcsearch/pdcsearch.jsp?可以根据要求从通讯作者那里获得后处理278个代码。279
改进且便宜的分子诊断允许从“一种尺寸适合所有疗法”转移到针对单个肿瘤的个性化疗法。然而,基于全面测序的大量潜在目标仍然是一个尚未解决的挑战,可以阻止其在临床实践中的常规使用。因此,我们设计了一个工作流,该工作流选择基于多摩学测序和计算机药物预测的最有希望的治疗靶标。在这项研究中,我们证明了关注膀胱癌(BLCA)的工作流程,迄今为止,尚无可靠的诊断来预测治疗方法的潜在益处。在TCGA-BLCA队列中,我们的工作流程确定了由21个基因和72种药物组成的面板,这些小组建议对95%的患者进行个性化治疗,包括5个尚未报道为BLCA临床测试的预后标记。自动化的预测是通过手动策划的数据补充的,从而可以进行准确的灵敏度或抗药性指导的药物反应预测。我们根据在手动策展期间发现的陷阱讨论了药物相互作用数据库的潜在改进。
背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。
这是一篇 PLOS 计算生物学教育论文。大脑以最小化某些成本的方式运作的想法在理论神经科学中普遍存在。由于成本函数本身并不能预测大脑如何找到最小值,因此需要对优化方法做出额外假设来预测生理量的动态。在这种情况下,最速下降(也称为梯度下降)通常被认为是大脑可能实现的优化算法原理。在实践中,研究人员通常将偏导数的向量视为梯度。然而,梯度的定义和最速方向的概念取决于度量的选择。由于度量的选择涉及大量自由度,因此基于梯度下降的模型的预测能力必须受到质疑,除非对度量的选择有严格的限制。在这里,我们对梯度下降的数学进行了教学回顾,并通过文献中的例子说明了使用梯度下降作为大脑功能原理的常见缺陷,并提出了限制度量的方法。
门控是细胞仪数据分析的一个基本和基本过程,因为它定义了感兴趣的细胞类型。当前,没有普遍接受的方法来代表和共享软件,出版物和存储库之间的门控策略。i建议使用质量总体系统与哥德尔数字的修改版本相结合,以唯一识别任何门控策略。主要人口系统首先用于识别双变量图上的大门;依次使用Gödel数来设置分层门控策略的序列。该过程结果是任何现有和将来的门控策略的独特识别剂。独特的识别剂具有,因为根据算术的基本定理,除一个自然数字以外的每个自然数字都是素数,也是质量数的产物,并且每个非质量数字都可以以一种方式将其纳入素数。此方法代表了迈向细胞术元数据算法的进一步步骤。
政策制定者目前面临的挑战是支持合适的技术组合以实现电力系统脱碳。由于技术和部门多种且相互依赖,以及降低成本和减少排放等目标相互对立,能源系统模型被用于制定实现脱碳电力系统的最佳过渡路径。近年来,该领域的研究有所增加,多项研究使用能源系统建模 (ESM) 来阐明国家电力系统的可能过渡路径。然而,在许多情况下,大量基于模型的研究使政策制定者难以驾驭研究结果并将不同的路径浓缩为一个连贯的图景。我们对瑞士、德国、法国和意大利的 ESM 出版物进行了深入审查,并分析了有关发电组合的主要趋势、关键供应和存储技术趋势以及需求发展的作用。我们的研究结果表明,关于 2030 年和 2050 年的技术组合提出了不同的解决方案,并非所有解决方案都符合当前的气候目标。此外,我们的分析表明,天然气、太阳能和风能将继续成为电力系统转型的关键参与者,而储能的作用仍不明确,需要更明确的政策支持。我们得出的结论是,由于每个国家的目标和当前的能源格局不同,不同的选择似乎成为突出的转型途径,这意味着每种情况都需要制定单独的政策。尽管如此,国际合作对于确保到 2050 年电力系统迅速转型至关重要。
因此,下一个提到的结果遵循。基于通过实验测量左手和右手拇指运动过程中大脑电活动获得的EEG信号,我们获得了用于训练集合随机森林算法的输入和输出数据,该算法是通过Scikit-Learn库的软件工具实现的。使用Joblib库的软件工具,可以通过将N_JOBS HyperParameter的值设置为-1时在物理内核和计算机流程上训练集合的随机森林算法时并行化计算。基于DASK库的软件工具,将并行计算分布在群集计算机系统的物理核心及其流中,这使得组织高性能计算以训练集合随机森林算法。结果,根据质量指标:准确性,ROC_AUC和F1评估了创建算法,软件 - 硬件计算管道的质量。所有这些一起制作
“我在一个我打算作为教学机会的作业中使用了 [ChatGPT]。我让学生编写带注释的参考书目,并严格说明样式和格式。然后我让他们提示 ChatGPT 做同样的事情,然后像他们认为我会给他们评分一样严格地给 ChatGPT 评分。我给了他们我将在人工生成的作业中使用的评分标准。效果非常好!他们真的把 ChatGPT 当作了重中之重。他们都使用图书馆数据库来检查资源是否存在(大多数情况下不存在),并使用《芝加哥格式手册》来检查风格是否正确(通常不正确)。他们都观察到它对于编写语法句子非常有用,但这还不够。我真的很高兴。”
摘要 - 这项工作介绍了几何空间信息树(GSIT),这是一个新颖的框架,通过将超平面分配给实体并降低下属节点的维度来构建层次关系。框架中的成员通过内部产品计算进行验证,简化执行步骤,同时跨越不同深度的层次结构进行身份验证。GSIT利用超平面的几何特性有效地编码和管理分层信息。它适用于车辆网络公共密钥基础架构(PKI),增强隐私保护,化名证书管理和多级可追溯性。此方法为管理安全的通信系统中的复杂层次结构提供了可扩展且灵活的解决方案。