1.8. 所有案件都需要律师、律师助理和业务执行人员投入时间和精力,但该区域还面临着被告被拒绝保释和拘留期限 (CTL) 正在到期的案件数量增加带来的额外负担。该区域的 CTL 案件数量显著增加,截至 2021 年 12 月 8 日,该区域共有 1,211 起 CTL 案件,自 2020 年 4 月 1 日起增加了 37.1%。该区域对 CTL 案件进行额外的监控和保证,以确保完成所有必要的工作,并将违反 CTL 的风险降至最低。如果审判无法在 CTL 内进行,由于法庭可用空间减少,这种情况经常发生,皇家检控署可以申请延长 CTL。
I. 简介 深空量子网络最重要的先决条件之一是能够在大基线上进行量子隐形传态和纠缠交换。将这一真正基本的量子协议扩展到地球-月球距离将扩大量子力学的有效性测试,并作为量子网络的先驱,可用于深空任务中的传感、安全通信、密集编码和量子计算机互连。迄今为止,只有长基线被动隐形传态(Pirandola2015)在长距离上得到了演示,包括进入太空(Ren 等人,2017)。在本白皮书中,我们讨论了通过深空量子链路 (DSQL) 合作(Mohageg2018)发起的超越行星尺度的完整量子隐形传态的实现。我们建议通过将地面接收器(或国际空间站 - ISS)与月球网关连接起来,在地球-月球距离范围内进行隐形传态演示。量子态隐形传态 (Bennett1993) 是一个独特的非经典概念,因为它使用两个通道将未知的量子态完美地从一个系统转移到另一个系统:最大纠缠态和经典信号。第一步是建立纠缠光子的长距离分布,如图 1(a) 所示,在太空中远距离分布,如墨子号任务所示,该任务通过快速变化分析仪在不同地面站点测量光子,在 1200 公里外进行了贝尔测试。量子隐形传态利用这种远程纠缠,如下所示 (Bouwmeester1997):首先,Charlie 生成一对纠缠光子 [图 1(b) 中的光子 A 和 B],A 发送给 Alice,B 发送给 Bob。 Alice 对光子 A 和另一个光子 C 携带的未知量子态联合进行贝尔态测量 (BSM) (Weinfurter1994、Mattle1996、Casmaglia2001),从而将她的两个光子投射到纠缠态中。这个 BSM 会将 Bob 的光子 B 投射到四种可能的状态之一,具体取决于 BSM 的结果。与此同时,Bob 必须在光子 B 到达量子存储器后将其保留,直到他通过经典信道收到 Alice 的 BSM 结果,然后他使用该结果应用幺正运算以完全恢复原始输入状态。请注意,Alice、Charlie 和 Bob 都不会获得有关输入状态的任何知识,并且最终的幺正变换仅取决于(随机)BSM 结果,因此该协议完全遵循量子无克隆 (Wooters1982)。
2. C3 分类法 2021 年度更新(基线 5.0)已于第一季度末完成,现已提供相应文档。此基线涵盖主要 C3 分类法和两个更高粒度级别的补充分类法:首次包含在基线 2.0 中的 C3 技术服务分类法,其中详细细分了利益社区、核心和通信服务,以及新的 C3 业务流程分类法。每个分类法的产品都是一张海报和一份报告,以及一份变更日志,用于解释此基线与上一个基线之间的差异。
2.本标准化基线的范围涵盖 WAPP 电力系统的电网排放因子。它是使用“TOOL07:电力系统排放因子计算工具”(以下简称“电网工具”)07.0 版的事前数据年份选项基于 2017-2019 年数据年份得出的。
本 NASA 技术手册由美国国家航空航天局 (NASA) 发布,作为指导文件,提供工程信息、经验教训、解决技术问题的可能方案、类似项目、材料或工艺的分类、解释性指导和技术以及任何其他类型的指导信息,这些信息可能有助于政府或其承包商设计、建造、选择、管理、支持或操作系统、产品、流程或服务。本 NASA 技术手册已获准供 NASA 总部和 NASA 中心和设施使用。它也可能适用于喷气推进实验室(联邦资助的研究和开发中心 [FFRDC])、其他承包商、赠款和合作协议的接受者以及其他协议的各方,但仅限于适用合同、赠款或协议中规定或提及的范围。本 NASA 技术手册建立了一个无人驾驶任务架构框架,旨在提高科学研究的价值;提高端到端任务开发的有效性,包括利用数字工程技术;加强机构能力管理;并改善 NASA 科学组合中数字模型和产品的协作应用。信息请求应通过 https://standards.nasa.gov 上的“反馈”提交。对本 NASA 技术手册的变更请求应通过 MSFC 表格 4657《NASA 工程标准变更请求》提交。原件由 Adam West 于 2021 年 3 月 11 日签署 _______________________________ _____________________ Ralph R. Roe, Jr. 批准日期 NASA 首席工程师
未分类// 常规 R 101338Z 5 月 19 日 FM CNO 华盛顿特区至 NAVADMIN INFO CNO 华盛顿特区 BT 未分类 NAVADMIN 108/19 传递给办公室代码:FM CNO 华盛顿特区//N1// INFO CNO 华盛顿特区//N1// MSGID/GENADMIN/CNO 华盛顿特区/N1/MAY// SUBJ/通用训练预防措施,以降低运动相关虚脱和死亡风险// REF/A/DOC/OPNAV/11JUL11// NARR/REF A IS OPNAVINST 6110.1J,身体准备计划。// RMKS/1。本 NAVADMIN 提醒所有人员注意通用训练预防措施 (UTP) 以降低运动相关虚脱和死亡风险的重要性,并指示修改参考 (a),即进行海军体能准备测试 (PRT) 的程序。不幸的是,在过去的一年里,有四名水兵在看似正常的体能训练中去世。一次损失太多,让每名水兵了解运动相关死亡的风险因素和将这些风险降至最低的策略至关重要。指挥官和主要领导人员,包括指挥体能领袖 (CFL),必须培养一种推广这些 UTP 的训练文化,识别早期痛苦迹象,并在出现明显痛苦迹象时立即终止劳累活动。2. 与运动相关的虚脱和死亡相关的风险因素可能是个人、环境或外部的。个人风险因素包括缺乏适当的环境或运动适应、脱水、近期或当前患病、累积疲劳、基线体质不佳、易患或潜在的心脏病、运动诱发的哮喘、镰状细胞性状 (SCT)、体内脂肪过多 (BMI > 30) 和之前 PRT 表现不佳。过度动机同样是一种重要的风险因素,因为个人可能会努力工作,而忽略身体不适的体征和症状的出现。环境或外部风险因素包括:高海拔运动、高环境温度和湿度以及含有兴奋剂的膳食补充剂,包括产热和能量饮料。3. 在训练过程中识别紧急情况并及时准确地做出反应至关重要。一些综合症可能导致迅速昏倒,而其他综合症则可能慢慢发展为最初的意识昏倒。了解可能导致运动相关昏倒的综合症有助于指导治疗。a. 心脏骤停 (SCA)。心血管性猝死导致的 SCA 通常很突然,会立即失去意识,有时还会出现短暂的癫痫样动作。在确认患者反应迟钝和脉搏消失后,必须开始高质量的心肺复苏术 (CPR)、部署自动电子除颤器 (AED) 并启动紧急医疗服务 (EMS)。b. 与 SCT 相关的劳力性猝死 (ECAST)。ECAST 患者可能是领跑者,也可能是开局强劲,但在崩溃之前,人们会注意到他们行动迟缓、落后和挣扎。他们开始失去平稳的协调性,跑步姿势和步态变得笨拙,双腿看起来僵硬或颤抖。受害者可能会抱怨逐渐虚弱、疼痛、痉挛或呼吸急促。
a NASA Goddard Space Flight Center, Greenbelt, Maryland, United States b L3Harris Technologies, Rochester, New York, United States c Northrop-Grumman Space Systems, Redondo Beach, California, United States d California Institute of Technology, Infrared Processing and Analysis Center, Pasadena, California, United States e University of Connecticut, Department of Physics, Storrs, Connecticut, United States f University of Maryland,美国马里兰州大学公园的天文学系,美国G科学系统与应用,兰纳姆,马里兰州,美国H洛克希德 - 马丁 - 马丁高级技术中心,加利福尼亚州帕洛阿尔托,美国I天文学局,NASA Headquarters,华盛顿州华盛顿特区,美国纽约市,美国纽约市,美国纽约市纽约市,美国纽约市纽约市,美国纽约市,美国纽约市。美国加利福尼亚州帕萨迪纳(Pasadena)
1 Introduction 1.1 Objective The objective of this Payload Planning, Integration and Operations Primer is to give Payload Developers (PDs) and Principal Investigators (PIs) that are new to the payload integration world an overview of the process and to outline the roles and responsibilities of several organizations with whom the new PDs and PIs will interface during the payload planning, integration and operations process.This primer highlights the many products to which both PDs and PIs will either provide inputs to or develop for their own use, as well as identify services that are available from several NASA ISS Payloads Office organizations that PDs and PIs will use as part of the payload overall integration process.1.2 Layout This primer starts from the beginning of the payload process and proceeds step by step (albeit at a very high level) from a proposed payload to a “manifest payload” and from there to integration all the way to launch and payload return.在有效载荷领域的术语中,人们会说从预增量规划、实时(执行)到后增量。本文档的主要重点是 PD/PI 需要开发的产品、提供输入以及他们可以使用的服务,以成功完成从预增量规划到后增量报告的有效载荷活动。本文档中尽一切努力消除在复杂的有效载荷集成领域中使用的日常术语,以便使新手尽可能容易理解。在本文档中,有许多网络链接只有在从显示设备阅读本文档时才会显示出来。它们嵌入在本文档中,供那些希望获得有关感兴趣主题的更多详细信息的人使用。这些网络链接将读者带到用于总结该特定主题材料的参考文档。本文档中以蓝色显示的所有材料(单词、句子等)下方都嵌入了网络链接;只需将鼠标滚动到其上并按照说明重定向到该链接即可。本文档中还有一个非常重要的附录。附录 A 描述了一种简化的有效载荷集成过程,称为“精益集成过程”。此精益集成过程的目标是让 PD 能够使用标准有效载荷集成过程的精简版本更快地将其有效载荷飞到国际空间站。但是,要使用精益集成过程,必须满足某些条件。敦促所有 PD 和 PI 仔细阅读附录 A。
摘要 飞行颤振试验是任何新飞机项目认证过程不可或缺的一部分。颤振测试是扩展包线的主要条件。本文总结了自主研发战斗机的颤振试验项目,旨在批准其基准配置的作战飞行包线。颤振清除方法结合了飞行前颤振分析和飞行颤振测试。扩展至全包线是沿着恒定马赫数和/或恒定 CAS 线的离散步骤组合完成的。通过处理飞行颤振试验数据并确保阻尼系数满足基于适航标准得出的清除标准,计算各种全局飞机模式的频率和阻尼系数(%g),从而获得清除。试验结果表明,正如分析估计所预测的那样,飞行包线无颤振。从设计师的角度概述了颤振清除理念、试验程序和飞行试验期间遇到的挑战。