本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要。基于模态的降阶模型因其在工程问题中的计算效率而成为结构建模的首选。经典模态方法的一个重要限制是它们是几何线性的。本研究提出了一种快速校正方法来解释由悬臂梁的大挠度引起的几何非线性。该方法依赖于预先计算的校正项,因此在时域响应分析期间增加的额外计算工作量可以忽略不计。在直梁模型和国际能源署 (IEA) 15 MW 风力涡轮机叶片模型上检验了该方法的准确性。结果表明,对于所研究的两种情况,所提出的方法显著提高了模态方法在轴向和扭转运动等非线性引起的二次挠度方面的准确性。
冷原子对于精度原子应用至关重要,包括时间保存和传感。用于产生冷原子云的3D磁光陷阱(3D-mot)将受益于光子波导集成,以提高可靠性并降低尺寸,重量和成本。这些陷阱需要将多个大面积,准直的激光束传递到原子真空电池。迄今为止,使用集成波导方法的光束传递仍然难以捉摸。我们使用光纤耦合的光子积分电路报告了87 RB 3D-MOT的演示,以使所有必要的光束在冷却和捕获超过5 x 10 6原子的冷却和捕获量超过200μk的捕获体积,该捕获体积比等效原子数差异差异递增的数量级。氮化硅光子电路转化了纤维耦合的780 nm冷却,并通过波导将光线降低到三个正交的非差异2.5 mm x 3.5 mm x 3.5 mm自由空间冷却,并直接将光束直接接口到苏比德池。这种完整的平面,CMOS铸造 - 兼容的集成梁输送与其他组件(例如激光器和调节器),有希望的冷原子应用系统固定溶液。
“界面就是器件”。2000 年诺贝尔物理学奖获得者赫伯特·克勒默的宣言精辟地概括了界面在电子器件功能和性能中发挥的核心作用。[1] 对于基于低维或拓扑量子材料的器件来说,这句话更是如此,因为它们的性质通常对表面和界面周围的几个原子层敏感。[2-5] 如此精密的“量子器件”需要能够以良好可控的方式实现原子级清洁、突变和平整界面的制造技术。这显然超出了低真空、环境空气或溶液环境下的传统制造工艺的范围。分子束外延 (MBE) 是一种可以提供最佳界面条件和可控性的制备方法,采用超高真空 (UHV) 环境、高纯度蒸发源、缓慢的生长速度和可精细调节的生长参数。[6] 标准 MBE 技术通常用于生长薄膜和垂直异质结构。一些平面纳米结构也可以通过 MBE 制备,[7,8] 但其控制效果不如传统光刻或电子束光刻那么好。通过 MBE 生长的“干净”样品必须经历“肮脏”的制造过程才能制成器件。这些过程中产生的不受控的表面和界面会显著改变器件的性能,尤其是由表面/界面敏感的量子材料制成的器件。人们非常希望通过分子束外延直接生长由量子材料组成的极其脆弱的器件,然后将其封装在超高真空环境中,以保留其原有性能。在过去的几年中,在平面纳米结构和器件的直接分子束外延生长技术方面取得了令人鼓舞的实验进展,[9-18] 这在很大程度上得益于
如今,掺杂稀土离子的石英光纤激光器,尤其是 Y b 3+ 光纤激光器,其平均功率已达到数千瓦量级,许多技术应用已开始显现可行性。例如:医疗手术、岩石钻探、远程云感测、射电天文学、太空无线电通信、卫星通信、无线电传输、远程激光通信以及用于远程充电电池的激光器。因此,其中一些应用需要研究与激光束大气传播相关的现象 [1]、[2]、[3] 和 [4]。最近,一些研究开始对速度场作为动态变量的数值解进行建模 [5],这与先前研究规定流体速度 [6]、[7] 不同。当激光束传播通过吸收介质时,会发生称为热晕的效应。尽管介质的吸收效应非常小,但当流体为空气时,会促进激光束附近的温度和密度场的变化。温度变化会引起折射率的变化,从而
角色 A — 电 您认为电是最好的无线东西。告诉其他人三个原因。告诉他们为什么他们的东西不需要无线。另外,告诉其他人以下哪个东西最不需要无线技术(以及原因):互联网、耳塞或电脑鼠标。 角色 B — 互联网 您认为互联网是最好的无线东西。告诉其他人三个原因。告诉他们为什么他们的东西不需要无线。另外,告诉其他人以下哪个东西最不需要无线技术(以及原因):电、耳塞或电脑鼠标。 角色 C — 耳塞 您认为耳塞是最好的无线东西。告诉其他人三个原因。告诉他们为什么他们的东西不需要无线。另外,告诉其他人以下哪个东西最不需要无线技术(以及原因):互联网、电或电脑鼠标。 角色 D — 电脑鼠标 您认为电脑鼠标是最好的无线东西。告诉其他人三个原因。告诉他们为什么他们的东西不需要无线。另外,告诉其他人其中哪一个最不需要无线技术(以及原因):互联网、耳塞或电力。
奇数碳自由基往往是共振稳定自由基 (RSFR),并被认为能促进燃烧火焰中的 PAH 形成和生长。38,39 人们一致认为,环戊二烯基 (cC 5 H 5 ) 自由基的化学性质在萘和菲的形成中起着重要作用,从而在 PAH 的形成中起着重要作用。1,40–43 尽管如此,环戊二烯基 (cC 5 H 5 ) 及其结构异构体的起源仍然难以捉摸。Gabriel da Silva 通过炔丙基自由基 (C 3 H 3 ) 与乙炔 (C 2 H 2 ) 的反应从头算研究了 C 5 H 5 势能面 (PES)。 44 将乙炔(C 2 H 2 )加到炔丙基自由基(C 3 H 3 )的末端,通过类似的势垒生成初始复合物 1-戊烯-4-炔基(HCCH 2 CCHCH )和 1,3,4-戊三烯基(H 2 CCCHCHCH ),能量约为 59 kJ mol 1
奇数碳自由基往往是共振稳定自由基 (RSFR),并被认为能促进燃烧火焰中的 PAH 形成和生长。38,39 人们一致认为,环戊二烯基 (cC 5 H 5 ) 自由基的化学性质在萘和菲的形成中起着重要作用,从而在 PAH 的形成中起着重要作用。1,40–43 尽管如此,环戊二烯基 (cC 5 H 5 ) 及其结构异构体的起源仍然难以捉摸。Gabriel da Silva 通过炔丙基自由基 (C 3 H 3 ) 与乙炔 (C 2 H 2 ) 的反应从头算研究了 C 5 H 5 势能面 (PES)。 44 将乙炔(C 2 H 2 )加到炔丙基自由基(C 3 H 3 )的末端,通过类似的势垒生成初始复合物 1-戊烯-4-炔基(HCCH 2 CCHCH )和 1,3,4-戊三烯基(H 2 CCCHCHCH ),能量约为 59 kJ mol 1
携带OAM的涡旋光束由于其广泛的应用而引起了人们的广泛关注,例如光学操控与捕获[1]、成像[2]、量子纠缠[3]、自由空间光(FSO)通信[4]等等。特别地,那些具有相互正交特性的光束已被用于FSO通信中的复用/解复用,以增加容量和频谱效率[5,6]。然而,基于OAM复用/解复用的FSO通信面临的主要挑战是大气湍流的干扰。当激光束在大气中传播时,由于湍流引起折射率的随机波动,一个OAM态的能量将分散到相邻态[7-10]。这种现象称为OAM模式的串扰。显然,OAM模式间的串扰会影响通信质量,严重的串扰甚至会导致通信失败。在之前的研究中,人们采用自适应光学来补偿湍流大气中光束的OAM[11,12],但自适应光学系统非常复杂。此外,重构
在小小的不良方向引起的2D材料中有序的中尺度结构允许探索各种各样的电子,铁电和量子现象。到目前为止,唯一诱导这种周期性排序的机制是通过层之间的机械旋转,而所得的Moire模式的周期性与扭角直接相关。在这里,我们报告了通过电子束引起的多层含硫的金属磷酸元素的MNPS 3的介观周期模式出现的根本不同的机制。在周期性的六角形图案的光束下形成,这些图案具有多个特征长度尺度,成核和相之间的跃迁以及局部动力学。