F. Ballarini等人,“ Fluka:地位和观点”,“第15届有关屏蔽加速器,目标和辐射设施的屏蔽方面的讲习班”(Satif-15),美国密歇根州东兰辛,美国密歇根州,美国密歇根州,9月2022日,2022年,2022年,2022年,
减少样品交换时间是最大限度提高大分子晶体学 (MX) 光束线吞吐量的关键问题,因为在像素阵列探测器时代,衍射数据收集本身可以在一分钟内完成。为此,在 SPring-8 的 BL41XU 光束线上,基于之前的 SPACE (SPring-8 精密自动冷冻样品交换器) 型号开发了一种升级版样品交换器 SPACE-II。SPACE-II 在 16 秒内实现一次样品交换步骤,其中其动作仅占 11 秒,这得益于以下三个特点:(i) 采用双臂,使样品可以在一个安装臂动作周期内交换,(ii) 采用长行程安装臂,无需取出探测器即可交换样品,(iii) 使用快速移动的平移和旋转台作为安装臂。通过在样品交换序列之前预先保存下一个样品,自动数据收集的时间进一步减少到 11 秒,其中 SPACE-II 的操作占 8 秒。此外,样品容量从 4 个 Uni-Puck 扩大到 8 个。SPACE-II 的性能已在 BL41XU 运行的两年多时间中得到验证;一天内安装在衍射仪上的平均样品数量从 132 个增加到 185 个,错误率为 0.089%,其中统计了用户无法继续实验而必须进入实验舱进行恢复工作的事件。基于这些结果,截至 2019 年 7 月,SPACE-II 已安装在 SPring-8 的另外三条 MX 光束线上。快速且高度可靠的 SPACE-II 现在是 SPring-8 MX 光束线最重要的基础设施之一,为用户提供了充分利用有限光束时间和明亮 X 射线的机会。
摘要 - 已将宝石检测器和激活箔用于脉冲中子源的热束线的剂量测定。第一个是一个活跃的检测器,它利用源的脉冲性质,使用飞行技术进行测量。相同的检测器已成功地用于测量梁的轮廓。第二个是一种被动辐照方法,它独立确认了ISIS中子源的Emma和Rotax束线的测得的通量。它们具有不同的热光谱,第一个光谱是用水(300 K)和第二种液态甲烷(100 K)的。随后使用参考SRAM模块的单个事件效应测试对这两个特征的梁线进行了用于辐照微电子。表明结果是一致的,并且必须应用一个校正因子以将冷束线上的结果扩展到室温下的结果。
加拿大光源的生物医学成像和治疗设施包括两个梁线,它们覆盖了从13 kevup到140 KEV的X射线能量范围。梁线的设计侧重于临床前成像和兽医科学以及微束辐射疗法中的同步加速器应用。虽然它们仍然是两种光束线活动的主要部分,但最近的许多升级增强了梁线的多功能性和性能,尤其是对于高分辨率的微型造影实验。因此,用户社区已迅速扩展,以包括高级材料,电池,燃料电池,农业和环境研究的研究人员。本文总结了梁属性,描述了端站与检测器池一起描述,并介绍了用户可用的各种X射线成像技术的几个应用程序案例。
研究光介导的过程的追求驱动了能够产生X射线辐射脉冲的设施的发展(Ponseca等人。,2017年; Kranz&Wachtler,2021年; Chergui&Collet,2017年; Milne等。,2014年)。激光驱动的来源可以在各种能量中可靠地产生这种辐射,并将紧凑型设置的好处和高水平的整合性在多功能实验室中以负担得起的成本(与其他大型设施相比)相结合。对于超快泵 - 探针实验,光束生成的全光方法在两个或更多光束之间提供了出色的同步。这样的设施具有例如高级形状的泵脉冲(Assion等,1998;布鲁格曼等人。,2006年)以及不同波长范围中探针的内在性能,例如可见的,Terahertz和X射线,使用相同的泵。此处描述的来源安装在模块化的X射线光谱端站内,有可能促使使用多种互补方法进行全面研究[见De Roche等。(2003),Naumova等。 (2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2003),Naumova等。(2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2018),Dicke等。(2018),Kunnus等。(2020)和Kjaer等。(2019)示例]。激光驱动的等离子体X射线源(PXS)(Mallozzi等,1974年; Turcu&Dance,1999年; Benesch等。,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。,2007年; Korn等。,2002年; Zamponi等。,2009年; Uhlig等。,2013年; Weisshaupt等人。,2014年; Afshari等。,2020)。这会导致表面原子和血浆在陡峭的梯度处的电离(Fullagar,Harbst等人。,2007年; Chen等。,2001年; Brunel,
- 讨论潜在的实验 - 提供有关提交提交的指南 - 协助实验设置,数据收集和数据分析 - 请参阅:https://www.aps.anl.gov/beamlines/directory for Sepersent
钻石光束线?钻石光源是哈威尔科学与创新园区的同步加速器综合体,可产生亮度极高的 X 射线、红外和紫外光束。这些高度聚焦的光束使科学家和工程师能够深入探究物质和材料的基本结构,解答从生命构造到地球起源等所有基本问题。钻石于 2007 年开放时,七个尖端实验站(称为“光束线”)已投入运营。现在又有四个已投入运营,另有 11 个处于不同的建设和优化阶段,到 2012 年,运营光束线总数将达到 22 条。该设施最终将容纳多达 40 个尖端研究站,每个研究站主要设计用于支持特定的研究团体或技术。钻石的光束线组合是与科学界协商后选定的,用于支持生命、物理和环境科学。
极紫外光刻 (EUVL) 技术基础设施的开发仍然需要许多领域达到更高水平的技术就绪状态。需要引进大量新材料。例如,开发 EUV 兼容薄膜以采用经批准的 EUVL 光学光刻方法需要以前没有的全新薄膜。为了支持这些发展,PTB 凭借其在 EUV 计量方面 [1] 的数十年经验 [2],在带内 EUV 波长和带外提供了广泛的光化和非光化测量。两条专用的、互补的 EUV 光束线 [3] 可用于辐射度 [4,5] 特性分析,分别受益于小发散度或可调光斑尺寸。EUV 光束线 [5] 覆盖的波长范围从低于 1 nm 到 45 nm [6],如果另外使用 VUV 光束线,则可以覆盖更长的波长。标准光斑尺寸为 1 毫米 x 1 毫米,可选尺寸低至 0.1 毫米至 0.1 毫米。单独的光束线提供曝光设置。过去曾采用 20 W/cm 2 的曝光功率水平,通过衰减或失焦曝光可获得较低的通量。由于差分泵送阶段,样品可以在曝光期间保持在定义的气体条件下。我们介绍了我们用于 EUV 计量的仪器和分析能力的最新概述,并提供了数据以供说明。
1-极端光线基础设施ERIC,Eli Beainines设施,多尔尼·布雷扎尼(Dolni Brezany),25241,捷克共和国2-劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory),美国CA 94550,美国3-美国第3--马里兰大学校园,美国马里兰州大学公园,美国4-2074年,美国4-550,美国4-20742 Collins,CO,CO,80523,美国5-劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利6-洛克希德·马丁公司7 -XUV Lasers Inc,Collins Fort Collins,CO 80527,美国
衍射法可揭示有关晶相体积分数、纹理和残余应力的信息,而断层扫描可提供材料微观结构的互补三维图像。衍射和断层扫描在定制材料设计、加工和寿命评估领域的影响越来越大。光谱学可提供有关化学键合细节的独特信息,并有助于理解原子间的相互作用。目前,工程材料科学对光子和中子的利用情况发展迅速:光子和中子源的通量增加,现有光束线和仪器的翻新以及设计和建造具有优化光束光学和位置敏感探测器的新光束线和仪器,以及数据质量和数量的提高。