X射线Ptychography的未来(一种连贯的衍射成像方法)有望实现的分辨率和实验效率,同时探测了越来越复杂的样品的特征。这是通过复杂的成像方法启用的,结合了高度优化的硬件,软件和过程。在本文中,解决了X射线ptychography实验的几个方面,强调了通过使用多个光束实现的增强的多功能性和有效性。从对纳米化的全面理解开始,讨论了聚焦X射线光学的生产。具体而言,开发了直接作品的岩性过程,并描述了其细节,特别强调了在50 kV加速度电压下在化学上半弹性抗性的情况下进行电子束光刻。此过程既多功能又精确,最终促进了菲涅尔区板(FZP)的制造。因此,论文报告了几个并联的几个FZP的应用,用于生成多个X射线梁以执行Ptychography。特别是研究了对标准Ptychographic方法的新型扩展。对多光束X射线PTYChography的研究始于紧密间隔的FZP,以线性阵列排列在同一芯片上,模拟和推进了先前关于该主题的研究,并证明了自制硬件的准备就绪,以实现更复杂的实现。最值得注意的是,FZP彼此之间的接近48 µm,并且最多可以使用三个梁,从而将视场(FOV)扩展了三倍。接下来,引入了一种新颖的设置,在多光束X射线ptychography的背景下促进了适应性的概念,这要归功于堆叠和机动的FZP。在测量之间将焦点光学元件移动的可能性赋予上述设置前所未有的多功能性。对于实验,样本更改或检测条件的每个新迭代,光学元件不必重新设计。足以使用各自的电机并将设置适应新的测量值。金纳米晶簇用各种梁的间距成像,从而在样品上同样间隔区域进行成像,并将FOV扩展到两个倍。这种设置的成功导致其在更复杂的测量中实现,最终导致表现出同时的多光束和多块Ptychography,这两个从未被放在一起。两层样品,与单光束Ptychographichographic测量值相比,层到层的分离范围从1400 µm降至100 µm,分辨率没有损害。最后,FZP的聚焦作用与策划
辨别活细胞、组织和材料的纳米级细节对许多现代研究工作至关重要。随着一组方法的出现,开辟了一条通往这一圣杯的道路,这些方法被统称为超分辨率显微镜 [ 1 , 2 ],能够突破衍射极限 [ 3 – 5 ]:传统上被认为是无法逾越的障碍。许多此类技术还可以揭示三维 (3D) 结构细节:相关示例包括受激发射损耗显微镜 [ 6 ]、PSF 工程 [ 8 – 12 ]、光激活定位显微镜 [ 7 ] 和多平面检测 [ 13 – 15 ],这只是其中的一部分。所有这些技术都依赖于非常精确的点源定位;它们的不同之处在于如何激发点物体以及如何收集相应发射的光子。对于 3D 成像,发射器经过荧光标记,确定其轴向位置是必不可少的一步。迄今为止,该问题已得到彻底研究,并已取得一些令人印象深刻的成果 [16]。但直到最近才开始考虑通过任何此类工程方法实现的基本深度精度 [17-19]。其背后的原理是系统地利用量子 Fisher 信息 (QFI) [20] 和相关量子 Cram´er-Rao 边界 (QCRB) 来获得与测量无关的极限 [21,22]。这与 Tsang 等人量化横向两点分辨率 [23-27] 的工作非常相似,后者已消除了瑞利诅咒 [28-31]。在最近的一项研究 [32] 中,已经确定了使用高斯光束的轴向定位的极限精度。只要将检测平面放置在一个最佳位置,只需一次强度扫描即可达到此极限。在本文中,我们概括了这些结果,并推导出拉盖尔-高斯 (LG) 光束轴向定位的量子极限,该光束携带量化的轨道角动量 [33]。在这里,光束腰充当点源在模式转换等之后发射的光的实现。另一个相关情况是在表面拓扑测量等中光束从表面的反射。通过线性叠加不同的 LG 模式,可以实现具有幅度、相位和强度模式的光束,这些光束在自由空间传播下简单旋转,保持横向形状。这些旋转结构是各种传感技术的核心 [34-37]。我们证明,强度扫描中只能获得全部(量子)信息的一小部分,其中只有一小部分可以归因于旋转。这清楚地证实了模式
[1] https://www.birmingham.ac.uk/research/activity/nuclear/about-us/facilities/high-flux-neutron-facility [2] FJ Wheeler 等人,《布鲁克海文医学研究反应堆超热中子源的物理设计、中子束设计、开发和中子俘获疗法的性能》,(1990 年) [3] H. Klein,《散裂中子源》,Conf. Proc. Intl. Linac Conference (1994 年) [4] https://www.neutrontherapeutics.com/technology/ [5] 国际原子能机构 (IAEA),《硼中子俘获疗法的进展》,非连续出版物 (2023 年) [6] M. Conroy,《UoB HF-ADNeF 用于医学同位素生产的 OpenMC 模拟》,海报,IOP Joint APP、HEPP & NP Conf. (2024) [7] AV Brown & MC Scott,《用于硼中子俘获治疗的高功率中子产生锂靶的开发》,《Conf. Proc. Vol. 4142》,《穿透辐射系统与应用 II》(2000) [8] B. Phoenix 等人,《用于锂靶的高功率冷却系统的开发》,《应用辐射与同位素》106(2015)49-52
[1] M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor、PK Lam、N. Treps、P. Buchhave、C. Fabre、CC Harb、Phys.冻结。莱特。 98,083602 (2007)
学院科学学员将提供两年的奖学金,以毕业有兴趣从事超级传播RF腔和大型加速和系统工程的物理学的研究,这是参与大学的专业知识领域的两个。奖学金将既可以向入学的学生和那些在培养后发现加速器科学的热情,并提供全部学费和津贴支持的人提供奖学金。研究员还将从Center提供的研究和专业发展机会中受益。到毕业时,研究员将有足够的能力作为加速科学的研究人员,在国家实验室中具有牢固的联系和实践性。
摘要。基于模态的降阶模型因其在工程问题中的计算效率而成为结构建模的首选。经典模态方法的一个重要限制是它们是几何线性的。本研究提出了一种快速校正方法来解释由悬臂梁的大挠度引起的几何非线性。该方法依赖于预先计算的校正项,因此在时域响应分析期间增加的额外计算工作量可以忽略不计。在直梁模型和国际能源署 (IEA) 15 MW 风力涡轮机叶片模型上检验了该方法的准确性。结果表明,对于所研究的两种情况,所提出的方法显著提高了模态方法在轴向和扭转运动等非线性引起的二次挠度方面的准确性。
摘要。基于模态的降阶模型因其在工程问题中的计算效率而成为结构建模的首选。经典模态方法的一个重要限制是它们是几何线性的。本研究提出了一种快速校正方法来解释由悬臂梁的大挠度引起的几何非线性。该方法依赖于预先计算的校正项,因此在时域响应分析期间增加了可忽略不计的额外计算工作。在直梁模型和国际能源署 (IEA) 15 MW 风力涡轮机叶片模型上检验了该方法的准确性。结果表明,对于所研究的两种情况,所提出的方法显著提高了模态方法在由于轴向和扭转运动等非线性引起的二次挠度方面的准确性。
20 世纪 70 年代和 80 年代是使用主动电子束实验探索日光层和天体物理环境中发生的一些基本物理过程的鼎盛时期。电子束实验用于研究航天器充电和航天器-等离子体耦合、束-等离子体相互作用物理、磁反弹和漂移物理、极光物理、波的产生以及军事应用。虽然这些实验取得了巨大的成功,但它们也受到当时可用技术的限制。空间仪器、数据收集和加速器技术的新进展使使用电子束在太空中进行革命性的新一代主动实验成为可能。在本文中,我们讨论了这样一个实验,即束等离子体相互作用实验 (Beam PIE),这是一项探空火箭实验,旨在 (a) 推进基于高电子迁移率晶体管的射频 (RF) 线性加速器电子技术在空间应用方面的发展,以及 (b) 研究调制电子束产生的哨声和 X 模式波。