自1960年代初在上一个century [1-7]中,自1960年代初以来,高功率,衍射有限的激光系统是激光物理和工程中最重要的任务之一[1-7]。这些系统是科学研究,各种技术应用所必需的,最重要的是,军事应用需要[7-9]。高功率连续波激光系统最有前途的技术是Fier激光技术,它与散装晶体或化学激光器相比提供了更好的尺寸,重量和功率。然而,存在基本的物理现象(布里渊散射,拉曼散射,横向模式不稳定性,热启动效应,表面和体积损坏),它们将单个纤维的输出功率限制在几个kws [4、5、9-13]中。在接近划分的模式下,超过100 kW激光输出功率的路径似乎是光束组合技术[14 - 17]分为两组:连续束与单个孔径结合和平行的“瓷砖”光束组合,可以将其实现为不连贯的光束组合(ICBC)和CoherentBeamBeamBeambembc(CBC)。在ICBC的情况下,远场中的功率密度与n(发射器的数量)相关。实验证明了此类系统,并且发现相对于大气中的长传播距离是可行的[18-22]。CBC的最大强度与N 2
主题:2D/Quantum/Energy材料主席:D。P. Mahapatra/Co主席:Ajay Nayak Keynote 4 - Bibhudatta Rout,美国北德克萨斯大学德克萨斯州,德克萨斯州,美国德克萨斯大学:使用Energetic Ion Beams对极端条件进行调查材料和设备。
6 Light and Matter 8 9 Hooman Barati Sedeh 1 , Danilo G. Pires 1 , Nitish Chandra 1 , Jiannan Gao 1 , Dmitrii Tsvetkov, 1 Pavel 10 Terekhov 1 , Ivan Kravchenko 2 , Natalia Litchinitser 1, * 11 12 1 Department of Electrical and Computer Engineering, Duke University, 27708 Durham, NC,美国。13 2纳米相材料科学中心,橡树岭国家实验室,37831 Oak Ridge,美国田纳西州。15 * Corresponding author: natalia.litchinitser@duke.edu 16 17 Keywords: mie resonances, structured light, multipole decomposition, high-index nanoparticle 18 19 Abstract 20 21 Structured lights, including beams carrying spin and orbital angular momenta, radially and 22 23 azimuthally polarized vector beams, as well as spatio-temporal optical vortices, have 24 attracted significant由于其独特的振幅,相位前,极化和25 26的时间结构引起的兴趣,从而在光学和量子中实现了各种应用27 28通信,微观渗透和超分辨率成像。在平行的结构化29个光学材料,超材料和元面孔中,由工程单元组成 - 31个元原子,开辟了新的途径,用于操纵光的流动和光学感测。32 33虽然几项研究探索了对单个元原子的结构化光作用,但它们的34个形状在很大程度上仅限于简单的球形几何形状。但是,
摘要原子技术的商业化需要用紧凑和可制造的光学平台代替实验室规模的激光设置。可以通过集成的光子学和元图光学的组合在芯片上生成自由空间的复杂布置。在这项工作中,我们使用平流芯片键合将这两种技术结合在一起,并展示了一种集成的光学体系结构,以实现紧凑的跨原子钟。我们的平面设计包括两个共对准的磁磁陷阱中的十二个光束。这些梁位于芯片上方,在中央位置与直径高达1厘米的中心位置相交。我们的设计还包括两个在晶格和时钟波长的联合传播光束。这些梁在共线和垂直方向发射以探测磁陷阱的中心,在那里它们的直径为≈100µm。使用这些设备,我们证明了我们的集成光子平台可扩展到任意数量的光束,每个光束具有不同的波长,几何形状和极化。
光路径差(OPD)光路径差(OPD)光路径差(OPD)光路径差(OPD)-----光路径长度的差异在光路路径长度中横梁差的光路差,这些光路在光学路径长度上具有光束长度的光束差异,这些光束长度差异在光路路径长度中,光束长度在参考和测试臂中传播的光束长度。参考和测试臂旅行。参考和测试臂旅行。参考和测试臂旅行。
•射线射线光学光学(几何(几何光学)光学):: Fermat的Fermat的Fermat的原理,原理,原理,携带携带和矩阵矩阵光学元件.. s l s l s l s l s l s l s l s l w o ti o ti o ti(i t f&g i g i g i g i s claverian scressic corterican s clave and clave scallice sclasic scallice scallice clave and clave wave wave wave wave( Beams) Beams): Scalar Scalar wave wave equation, equation, Helmholtz Helmholtz equation, equation, Superpostion Superpostion of of Waves, Waves, Interferometers, Interferometers, Paraxial Paraxial Wave Wave Equation, Equation, Gaussian Gaussian Beam Beam Solution, Solution, ABCD ABCD Law, Law, Hermite Hermite-Gaussian Gaussian Beams Beams.ABCD ABCD法律,法律,Hermite Hermite高斯高斯横梁。•激光激光物理物理学:轻度放大,放大,抽水计划,方案,增益系数,系数,系数,激光激光输出(CW(CW(CW和脉冲)脉冲)。声音大声疾呼,光学和非线性非线性光学元件• Electromagnetic Electromagnetic Optics Optics:: Maxwell Maxwell Equations Equations in in Vacuum Vacuum and and Dielectrics, Dielectrics, Monochromatic Monochromatic Waves, Waves, Plane Plane Waves, Waves, Polarization Polarization Ellipse, Ellipse, Jones Jones Formalism, Formalism, Reflection Reflection and and Refraction Refraction of of Light Light from from aa Boundary边界..•Fabry Fabry-孔孔洞腔::平面平面腔,腔,阻尼,阻尼,技巧,技巧,技巧,球形球形 - 镜面镜面腔,腔,稳定稳定和不稳定的不稳定型腔。光学光学涂层涂层设计•光子光子光学光学和光材料 - 物质材料相互作用::光子光子光子和光子光子流式流式材料材料属性属性,并模型模型光子光子和原子和原子和原子和原子流,以及流,材料,材料材料属性以及模型,模型,模型,模型,模型,光子,光子光子和型号。
由于正则角动量守恒,在螺线管场内产生的带电粒子束在螺线管场外获得动能角动量。动能轨道角动量与阴极上的场强度和光束大小的关系称为 Busch 定理。我们以量子力学形式表述了 Busch 定理,并讨论了量化涡旋光束(即携带量化轨道角动量的光束)的产生。将阴极浸入螺线管场是一种产生电子涡旋光束的有效而灵活的方法,而例如,可以通过将电荷剥离箔浸入螺线管场来产生涡旋离子。这两种技术都用于加速器以产生非量化涡旋光束。作为高度相关的用例,我们详细讨论了在电子显微镜中从浸入式阴极产生量化涡旋光束的条件。指出了该技术用于产生其他带电粒子涡旋束的普遍可能性。
问题主机DOF 3D DOF主机/3D误差变量和收敛模式非均匀性动脉粥样硬化斑块 - 光束23529 761244 3%3%3%tranverse轴向应变,宿主 - > 3D复合cection cection cection spar - 光束89175 227675 2276739 4%25%25%25%25%25%25%的Edge Edge Ender-Ender 7 3D-3D-3D-3D-3D-3D-> - > 4560150 3% 30% Free-edge failure index, 3D -> HOST Composite notched specimen – Plate 10000 10000000 0.1% 3% Tensile peak stress, HOST -> 3D Multilayered beam – Beam 23595 63210 37% 0.4% Plastic strain, HOST -> 3D Double-swept blade – Beam 13200 203808 6% 1% Natural frequencies, HOST -> 3D Viscoelastic beam – Beam 5475 56400 10% 5% Modal loss factor, HOST -> 3D Randomly distributed RVE – Beam 13642 31524 43% 2% Local shear strain, HOST -> 3D Lattice structure – Beam 13584 617580 2% 1% Displacement, HOST -> 3D Three-point bending of a sandwich beam – Beam 14229 201504 1% 0% Transverse stress, HOST -> 3D Low-velocity impact on a bi-metallic plate – Plate 10659 856251 1% 16% Plastic strain, 3D -> HOST Large deflections in asymmetric cross-ply beams – Beam 5124 573675 1% 7% Shear stress, HOST -> 3D Disbonding in sandwich beams – Beam 41160 171888 24% 1% Peak load, HOST -> 3D Curing of a composite part –梁16569 599571 3%0%弹簧斜角,3D->主机
