本课程计划和材料由提交了材料的参与者创建,这些材料是响应 NIBIB 中学生物工程 (BEAMS) 挑战赛而创建的。我们已尽一切努力验证内容的准确性。这些材料中包含的非联邦网站的外部链接提供了更多信息和资源。NIBIB 无法证明非联邦网站的准确性或可访问性。这些材料中包含的声明、意见或结论不一定代表 NIH、其组成机构和中心或美国政府的声明、意见或结论。这些材料属于公共领域,可以自由使用和改编。
ESRF – EBS是ESRF的设施升级,超过2015 - 2022年,它使其科学用户成为了首个,低电位,高能量,高能量同步器光源和新的,新的,剪切的束线。With a revolutionary new storage ring concept that increases the brilliance and coherence of the X-ray beams produced by a factor of 100 compared to present- day light sources, ESRF–EBS represents a new generation of synchrotron, an extraordinary new tool for scientists to study the heart of matter, and an advanced platform for industry users in exploiting the ESRF's X-rays to innovate in their fields of activity.
具有空间变化的极化模式的近端光束是结构化光领域的许多最新发展[1-4]。这种结构化的梁可以复杂,许多空间模式都促成了复杂的极化模式[5-7]。最简单的是,它们可能是由具有正交极化的两种不同的空间模式形成的。基本示例是具有径向或方位角极化的光束[8-10]。前者是在传播方向上实现紧密的聚焦和增强的田间强度[11,12]。我们在2020年表明,最简单的vecter梁可以表现出偏振模式,该模式很容易用天空结构鉴定[13]。此类模式的特征是
市中心放射肿瘤诊所提供哪些疗法?“我们为 18 岁及以上的患者治疗所有类型的实体肿瘤,”Lewinsky 博士说。“我们使用外部束放射疗法,这种疗法可以精确地向肿瘤发射辐射,同时保留和保护肿瘤周围的正常组织。”Lewinsky 博士指出,诊所提供几种类型的外部束放射疗法。3D 适形放射疗法使用 CT、MRI 和 PET 图像从多个方向发射辐射束,以将光束限制在肿瘤的形状内。同样,强度调制介质疗法 (IMRT) 使用来自多个方向的辐射束,其中单个光束可以向肿瘤的某些部位发射更高的剂量。图像引导放射治疗 (IGRT) 是一种 IMRT,它使用成像,同时
Perlmutter-CPU 上的 394,008 个节点小时 研究摘要:激光束在等离子体中不受阻碍地长距离传播对于高能量密度 (HED) 实验和惯性约束聚变的成功至关重要。然而,这种传播可能会受到多种激光-等离子体不稳定性的影响。由螺旋激光束驱动的等离子体波的拓扑结构提供了以前未探索过的对激光-等离子体相互作用的控制水平。与传统光束不同,螺旋激光束可以与等离子体交换角动量并激发螺旋等离子体波。这些等离子体波的螺旋拓扑从根本上改变了它们与电子和离子的相互作用,改变了不稳定性的发展和特性,包括增长率、阈值和饱和度。该项目的研究计划结构复杂,从暖螺旋等离子体波的基本特性开始,逐渐发展到单个散斑中的激光等离子体不稳定性。由于其场结构的性质,螺旋激光束和螺旋等离子体波必须以 3D 形式模拟。该项目将采用 3D 粒子胞内 (PIC) 模拟来捕捉相关物理现象。在 OMEGA 和 NIF 等高能激光设施中产生螺旋光束的新兴能力强调了及时检查螺旋激光驱动器对缓解激光等离子体不稳定性的影响的重要性。我们对螺旋光束驱动的激光等离子体不稳定性的研究由美国能源部 (DOE) 的两个项目资助:高能密度实验室等离子体项目 (DOE/SC/FES/HEDLP) 和通过高级计算进行科学发现项目 (DOE/SC/SCiDAC)。该项目针对 DOE 感兴趣的特定领域是“等离子体的非线性光学和激光-等离子体相互作用”,以促进聚变能科学。支持该提案的 SCiDAC 项目旨在解锁百亿亿次超级计算机上惯性聚变能量相关模拟中的动力学效应。该项目还将为研究生提供培训,让他们将高性能计算应用于激光-等离子体相互作用的研究。
• Exterior wall details from footing to highest point of roof that designate all materials and members by size, type, grade, thickness, spacing, and finishes • Sections through stem walls, thickened slab footings, and grade beams indicating reinforcing • Roof framing details showing all critical connections • Sections and connection details of all critical construction points or special structural items - fireplaces, skylights, post-to-beam, post-to-footing/stem wall,屋顶框架成员到梁,山脊板,墙板,内部轴承点等。•详细信息,包括洗手间的详细信息,柜台,坡道,门把手,扶手等。1•楼梯横截面,包括胎面宽度和提升物高度
本课程为毕业生提供应力和应变的理论知识以及材料力学的高级概念,以解决机械设计问题,并使任何组件的设计都不会在其使用寿命内失效。课程内容包括:应力和应变的三维分析、平衡和兼容性方程、三维胡克定律、弹性中的二维问题、失效准则、数值方法、能量方法、疲劳和断裂力学以及材料的塑性行为。学生将能够将所学知识和技术应用于弯曲梁、弹性地基梁、非对称梁、棱柱元件的扭转、厚壁圆柱体和旋转圆盘的应力分析。
本发明涉及一种装置,通过该装置,物体通过电子束和影响电子流的静电场或电磁场(电子透镜)以放大的比例成像。根据本发明,多个电子透镜影响电子束,并一起以显微镜或望远镜的方式实现更高的放大率。如前所述,电磁电子透镜和带负电的静电电子透镜相当于光学中的会聚透镜,而带正电的静电电子透镜相当于发散透镜。因此,通过组合这些透镜,可以为电子束模拟光学中利用会聚或发散光束的任何已知装置。此外,还可以以这种方式构建直接使用或反射后使用电子束的显微镜或望远镜。通过以显微镜或望远镜的方式组合多个透镜,可以获得特别高的图像放大倍数。使用电子束具有特别大的优势,
所有标本都得到加强,具有相同的混凝土级和钢筋。与各种强化配置的故障扭转力矩以及性能改进和裂纹模式一样。这项研究的目的是评估使用环氧键合的GFRP织物作为外部横向加固,以将经受扭转的钢筋混凝土束。将增强梁的效率结果与对照束的实验结果进行了比较,而无需使用FRP。这项研究表明,所有GFRP增强光束的扭转行为都有显着改善。使用FRP被证明是可行的。各种包装构型的有效性表明,完全包裹的光束的性能要比使用条更好。简介: