轴承是一种类似于承载轴的机械元件,因此旋转或来回运动可以平稳、安全且持久。轴承应坚固耐用,以使轴和其他机械元件正常工作。如果轴承不能正常工作,则整个系统的性能将下降或无法正常工作。为此,高碳钢轴承的材料应坚固耐用。为了获得金属所需的性能,使用热处理工艺,尤其是外圈和内圈。轴承外圈和内圈的硬度测试是在热处理工艺之后进行的。使用数字洛氏硬度计测试暴力,可以直接在工具的刻度上读取暴力值。轴承外圈和内圈的热处理工艺可以产生制造商想要的机械性能,即洛氏硬度62-64 HRC。如果硬度测试结果符合工厂标准,则外圈和内圈符合制造商的质量要求。©2020应用科学与先进技术杂志。 版权所有
测量声音的一种方法是振幅,它表示分贝(db)中的强度。也可以将声音作为频率测量,用Hz或KHz表示。声音频率是指振动的数量(或周期)每秒都在赫兹(Hz)中测量。健康的人耳通常可以感知到20 Hz至20,000 Hz范围内的声音频率,或者简称为20 kHz。1对于视角,低音低音介于20 Hz至250 Hz之间,250 Hz和4 kHz之间的人类语音以及4 kHz至20 kHz的高音声音)。声音频率高于20 kHz,通常被认为是超声波,通常超出了人类的感知。
注意:作者已授予非独家许可,允许加拿大图书馆和档案馆在任何地方复制、出版、存档、保存、保存、通过电信或互联网向公众传输、出借、分发和出售论文。世界各地,用于商业或其他目的,以缩微形式、纸质、电子和/或其他格式。
最常用的潜艇探测和定位手段之一是定向频率分析和记录 (DIFAR) 声纳浮标系统。这是一种被动系统,通过接收潜艇发射的声学信号、探测和定位潜艇来工作。近年来,DIFAR 声纳浮标还被用于追踪鲸鱼的迁徙并记录它们发出的声音( McDonald,2004;Miller,2012;Greene Jr. 等,2004)。一般而言,DIFAR 声纳浮标配备有由五个水听器组成的水声天线,这些水听器由交叉的梯度水听器对和一个附加的中央水听器组成(Mallet,1975;Salamon,2004)。类似的没有中央水听器的天线系统也是已知的(Stover,1969;Salamon 等人,2000)。在本文中,作者将证明这两种解决方案都是正确的,并且在很宽的信噪比范围内提供类似的方位精度水平。与任何被动或主动声学系统一样,方位精度受噪声影响,其中噪声在声纳浮标的工作频率范围内(10 Hz 至 3 kHz)特别高(Salamon,2004;2006;Marszal 等人,2005)。了解
纯方位估计是目标跟踪中的基本问题之一,也是具有挑战性的问题。与雷达跟踪的情况一样,偏移或位置偏差的存在会加剧纯方位估计的挑战。对各种传感器偏差进行建模并非易事,文献中专门针对纯方位跟踪的研究并不多。本文讨论了纯方位传感器中偏移偏差的建模以及随后的带偏差补偿的多目标跟踪。偏差估计在融合节点处处理,各个传感器以关联测量报告 (AMR) 或纯角度轨迹的形式向该节点报告其本地轨迹。该建模基于多传感器方法,可以有效处理监视区域中随时间变化的目标数量。所提出的算法可得出最大似然偏差估计器。还推导出相应的 Cram´er-Rao 下限,以量化所提出的方法或任何其他算法可以实现的理论精度。最后,给出了不同分布式跟踪场景的模拟结果,以证明所提出方法的能力。为了证明所提出的方法即使在出现误报和漏检的情况下也能发挥作用,还给出了集中式跟踪场景的模拟结果,其中本地传感器发送所有测量值(而不是 AMR 或本地轨道)。
维修和保养 PCB 通过其对 PCB 销售的所有 Platinum Stock 产品提供“终身保修”以及对所有其他 PCB Stock、标准和特殊产品提供有限保修,保证客户完全满意。由于我们的传感器和相关仪器的复杂性,不建议进行现场维修和维护,如果尝试进行现场维修和维护,将使工厂保修失效。除了常规校准和电池更换(如适用)外,我们的产品无需用户维护。使用不会损害结构材料的溶液和技术清洁电连接器、外壳和安装表面。在非密封设备附近使用液体时要小心。只能用湿布擦拭此类设备 - 切勿浸湿或浸没液体。如果设备损坏或停止运行,我们的应用工程师将全天候为您提供故障排除支持。请致电或发送电子邮件,告知型号和序列号以及问题的简要说明。校准 必须对传感器和相关仪器进行常规校准才能保持测量精度。我们建议每年校准一次,在暴露于任何极端环境影响后或在任何关键测试之前进行校准。PCB Piezotronics 是一家通过 ISO-9001 认证的公司,其校准服务由 A2LA 认证为 ISO/IEC 17025,可通过 NIST 完全追溯到 SI。除了标准校准服务外,我们还提供专门测试,包括:高温或低温下的灵敏度、相位响应、扩展高频或低频响应、扩展范围、泄漏测试、静水压力测试等。有关更多信息,请联系您当地的 PCB Piezotronics 经销商、销售代表或工厂客户服务代表。
人工智能(AI)在数据驱动的状态监测研究中不断升级。传统的基于专家知识的预测和健康管理(PHM)过程可以借助各种AI技术(例如深度学习模型)变得更加智能。另一方面,当前基于深度学习的预测存在数据缺失问题,尤其是考虑到实际工业应用中组件的不同操作条件和退化模式。随着仿真技术的发展,基于物理知识的数字孪生模型使工程师能够以较低的成本访问大量仿真数据。这些模拟数据包含组件的物理特性和退化信息。为了准确预测退化过程中的剩余使用寿命(RUL),本文基于现象学振动模型构建了轴承数字孪生模型。使用领域对抗神经网络 (DANN) 来实现模拟和真实数据之间的领域自适应目标。将模拟数据视为源域,将真实数据视为目标域,DANN 模型能够在没有任何标记信息先验知识的情况下预测 RUL。基于实际轴承运行至故障实验的验证结果,与最先进的方法相比,所提出的方法能够获得最小的 RUL 预测误差。
承重结构的保护 2000 年 HSC 规则第 7.4.2.3 款的解释 2000 年 HSC 规则第 7.4.2.3 章内容如下: 位于重大火灾危险区域和中等火灾危险区域内的主要承重结构以及支撑控制站的结构应布置得能分配载荷,使船体和上层建筑在适当的防火时间内暴露在火焰中时不至于倒塌。承重结构还应符合 7.4.2.4 和 7.4.2.5 的要求。 解释 保护时间 位于重大火灾危险区域(分类为 A)和中等火灾危险区域(分类为 B)内的主要承重结构以及支撑控制站的结构防火时间应至少与表 7.4-1 和 7.4-2(如适用)对这些支撑所在处所周围分区的要求相同。根据第 7.4.1.1 款,结构防火时间在任何情况下不得少于 30 分钟。除表 7.4-1 和 7.4-2(如适用)中所述分区外,钢制承重结构无需隔热。结构防火范围考虑的结构应为重度和中度火灾危险区域(分类为 A 或 B)内的所有承重结构以及支撑控制站所必需的所有结构(无论位于何处)。支撑控制站的结构的垂直范围应一直考虑到船体内部的空间。但是,根据 HSC 规则 7.4.2.1(第一部分),船体空隙内的所有结构可免于考虑。防火试验 根据 IMO FTP 规则附件 1 第 11 部分对给定材料的舱壁或甲板进行的标准防火试验的批准可以适用于保护相同材料的支柱。结构防火时间应视为与防火试验中实现的时间相同。 注:1. 本 UI 将由 IACS 协会在 2014 年 1 月 1 日或以后安放龙骨的高速船上统一实施。
任何指控的犯罪或可能对检方证据的可采性产生重大影响的信息。根据这项政策,政府的披露将超出其宪法义务。但是,这项扩大的披露政策并没有在刑事案件中产生一般的发现权。它也没有为被告提供任何额外的权利或补救措施。如果不清楚是否应披露证据或信息,鼓励检察官向被告或法院披露此类信息以供秘密审查,并在适用的情况下寻求法院的保护令。通过这样做,检察官将确保对公平审判和判决的信心。还鼓励检察官定期接受有关政府披露义务以及围绕该义务的新兴判例法的培训。