摘要 在过去十年中,山区洪水和泥石流的床沙测量技术取得了重要进展。虽然悬浮沉积物仍然是测量的最常见的部分,但床沙仍然是一个问题,因为它不仅更难测量,而且对地貌变化的影响也最大。床沙输送现场测量技术的发展至关重要,需要复杂化才能在不同环境中有效发挥作用。理想情况下,床沙测量技术应该是非侵入性的、灵活的和代表不同类型的输送。这篇文章是几十年来在山洪中对砾石和鹅卵石床溪流进行床沙实验的结果,以及为未来应用开发床沙测量方法和设备的问题。描述了捕获和追踪技术,并强调了高分辨率遥感图像的潜力。随着人们对砾石河床动力学和变化的认识不断提高,对用于进一步模型验证和应用的可靠现场数据的需求将不断增长。
过去二十年的重点是改善慢性伤口范围广泛的患者的治愈率。现在是现实的,可以期望通过循证护理,许多伤口将在合理的时间范围内愈合。尽管总体上有所改善,但是,即使没有最高的护理标准,慢性伤口仍然很少但很大一部分。因此,这些伤口的管理受到了审查,注意力转向了影响其愈合的因素和伤口床的准备。伤口床制备不是一个静态概念,而是动态且迅速发展的概念。falanga在回顾本文档第一篇文章中的概念的演变时描述了时间的发展。这是一个模型,包括支撑伤口床制备的四个组件(组织管理,炎症和感染控制,水分平衡,上皮(边缘)进步)。Falanga建议,时间框架为临床医生提供了一种全面的方法,可以应用基础科学来制定最大化伤口愈合潜力的策略。该EWMA位置文档旨在通过研究如何将时间组成部分转化为不同伤口类型的实际管理,从而提高对伤口床制备的概念的理解,每种都面临着独特的临床挑战。相比之下,莫法特,莫里森和皮纳的文章表明,对于静脉腿溃疡,重点是恢复和维持水分平衡,而组织管理和感染控制则不太突出。埃德蒙兹(Edmonds),福斯特(Foster)和沃登(Vowden)的文章表明,对于糖尿病足溃疡,时间框架内的重点是以自由基和重复的伤口清理形式进行组织管理,炎症和感染控制在这些伤口中起着重要而复杂的作用。这些文章说明时间框架不是线性的:不同的伤口需要注意不同元素。该框架还认识到一种干预会影响多个时间要素。清创术可用作组织管理的干预措施,但也可以影响炎症和感染控制。伤口床制备模型取决于有效,准确的患者和伤口评估。使用这种方法临床医生可以在早期鉴定非治疗伤口的患者以及可能影响进展的策略的早期鉴定方面发展技能,而不是让患者长时间没有干预。该立场文件加强了将时间整合到整个护理计划中的重要性,该计划解决了患者治疗的所有其他方面。静脉溃疡,如果没有压缩就不会愈合;没有压力卸载和糖尿病控制的糖尿病足溃疡也不会。我们对伤口的思维的这种转变应促进对可在伤口床制备模型中使用的目标干预措施的发展产生越来越多的兴趣。随着我们的理解的提高,将有可能向那些将从使用中受益的患者正确靶向更先进和昂贵的技术。这些范围从基本干预措施,例如升高肢体以改善静脉腿溃疡的水分平衡,或覆盖伤口以降低糖尿病足溃疡感染的风险,到更复杂的先进疗法以刺激上皮(EDGE)进步。的确,时间为这些治疗的具有成本效益的引入提供了一个框架。伤口床的准备提供了巨大的潜力,可以改善顽固性伤口的患者的生活,并在各级卫生专业人员的能力上有效地管理复杂的非治疗。此外,使用时间框架作为正在进行的整体伤口管理策略的一部分,有可能通过治疗这一小但昂贵的患者来减轻卫生服务的财务负担。
抽象激光粉床融合(L-PBF)是一种增材制造技术,它提供了创建复杂的NDFEB磁铁的机会,并有可能提高其性能。l-PBF具有自己的加工挑战,例如由于快速冷却而引起的孔隙率/裂纹和热应力。这项研究的重点是优化参数和使用升高温度(300-550°C)粉末床加热以减少缺陷的产生。This paper includes a detailed process parameter investigation, which revealed samples with a maximum energy product, (BH) max , of 81 kJ/m 3 (remanence, B r 0.72 T; coerciv- ity, H ci 891 kA/m) without post/pretreatment, which are the highest (BH) max and B r for L-PBF-processed NdFeB commercial powder.据观察,所有高磁性样品都具有高密度,但并非所有高密度样品都具有高磁性。SEM图像和讨论在学术上是有价值的,因为它们清楚地说明了融化池中谷物形成和形态,文献提供了有限的讨论。此外,本文结合了定量相分析,表明磁性特性随着强磁相ND 2 Fe 14的增加而增加。本文的另一个重要贡献是,它是第一个研究加热床对L-PBF-NDFEB合金的影响的研究。通过使用高架粉末床加热,可以改善样品和B r的密度,而H C降低。(BH)最大也可以通过高架粉末床加热从55 kJ/m 3提高。使用加热床(400°C)获得的最大磁性特性如下:B r,0.76 t; H CI,750 ka/m; (BH)Max,84 kJ/m 3。
制定了加权规则(由于资金限制,限制为 10 条),以设置约束条件,以遵守与性别和病房特定设置相关的政策,同时还制定了床位溢出算法和其他患者优先级矩阵。此后,AI 求解器的任务是为急诊科 (DEM) 的积压患者(高峰日平均 59 名患者)以及所有入院来源的正常业务 (BAU) 入院患者(平均每天 152 名患者)分配床位(基于可用床位供应量),并将一些患者排除在外(有限规则)。
2.如果 N 的值为 1 或小于 1,则可以安全地提供 1 级单元,介质寿命约为。12 个月。如果 N 的值为 1.5 并且仍然提供 1 级单元,则介质寿命缩短为 8 个月 - 12 / 1.5 = 8 个月 3.如果为第二个/下一个污染物选择的 EcoScrub 介质与为第一个污染物选择的介质不同,则将选择 2 级单元,并针对每个介质分别计算介质寿命,如上所述。4.如果为两种或多种污染物选择的 EcoScrub 介质相同,则可以将针对单个污染物计算出的床数相加,以进行介质的组合选择。5.ECO-SCRUB 装置的级数不应超过 3(三)。但是,如果级数超过 3,则可以使用非标准装置选项。(最多 4(四)级)。如果发生这种情况,请咨询工程师。BRY-AIR (ASIA) PVT LTD 部门以获取指导。选择“薄床”ECO-SCRUB 的步骤基于单一吸附剂的应用 a.如果根据上述选择程序计算出的级数小于 0.25,请选择相应的 Eco-Scrub 薄床 1 级模型。b.如果根据上述选择程序得出的级数大于 0.25 但小于 0.5,则选择相应的 Eco-Scrub 薄床 2 级模型。c. 如果根据上述选择程序得出的级数大于 0.5 但小于 0.75,则选择相应的 Eco-Scrub 薄床 3 级模型。基于两种/多种吸附剂的应用 a.如果根据上述选择程序得出的每种吸附剂的级数小于 0.25,则根据所选吸附剂的数量选择相应的 Eco-Scrub 薄床 2 级或 3 级模型。b.如果根据上述选择程序选定的每种吸附剂的级数,对于一种吸附剂,计算结果小于 0.25,而对于第二种吸附剂,计算结果大于 0.25 但小于 0.5,则选择 Eco-Scrub 的薄床 3 级模型,其中该装置的一个床装有前一种吸附剂,其余两个床装有后一种吸附剂。
深空原子钟 (DSAC) DSAC 是一种微型、超精密的汞离子原子钟,在 OTB 上托管时,将发射到地球轨道以展示其单向导航的功能和实用性。DSAC 将进行为期一年的演示,以提供下一代深空导航和无线电科学任务所需的时间和频率稳定性,并可能为未来的全球定位系统提供所需的时间和频率稳定性。DSAC 由加州理工学院喷气推进实验室 (JPL) 为美国宇航局空间技术任务理事会的技术演示任务计划开发。
高温热能储藏越来越重要,它是集中太阳能发电厂的关键组成部分。包装的床储藏代表经济上可行的大规模存储解决方案。目前的工作涉及填充的床热储能的分析和优化。评估了准动态边界条件对存储热力学性能的影响。存储的级别成本是创新的,用于热量存储设计。提出了一种设计包装床热储能的完整方法。这样做,对工业规模填充床进行了全面的多客观优化。结果表明,准动态边界条件导致降低约5%的存储热效率。相反,研究的设计变量对TES LCO的优化的影响仅受准动力边界条件的影响略有影响。纵横比在0.75到0.9之间将最大化存储热效率,而低初步效率在0.47左右会最大程度地减少存储的水平成本。这项工作证明了在优化热能stor年龄时应考虑准动态边界条件。存储的级别成本也可以被视为填充床热能存储的更可靠的性能指标,因为它较少依赖于可变边界条件。
在目前的研究中,我们开发了一种球床热能存储 (PBTES) 系统来利用发动机废气产生的废能。开发的 PBTES 与电力测功机耦合的固定式柴油发动机集成在一起,用于实验研究。比较了集成和未集成 PBTES 系统的发动机性能。在各种负载条件下,在充电过程中,60-75% 的能量可以存储在制造的系统中。研究发现,考虑到充电过程,使用该存储系统可以节省近 11-15% 的发动机燃料能量。PBTES 的热回收/排放表明可以节省 6-8.5% 的燃料一次能源。系统组合(发动机 + PBTES)效率在不同负载条件下变化范围为 11-38%。当施加 3 kW 负载时,可获得最高的能量节省,为 3.32%。开发的系统可轻松用于家庭或工业用途的空间加热或热流体需求。关键词:热能储存系统,球床,废热回收,
本研究提出了一种对激光粉末融合的原位监测方法。使用标准的激光光学元件,在瞄准前扫描配置中获得了粉末床的同轴高分辨率多光谱图像。可以生成整个114×114 mm粉末床的连续概述图像,检测到直径低至20 µm的物体,最大偏移量为22-49 µm。通过从405 nm到850 nm的6个不同波长捕获图像来获得多光谱信息。与已建立方法的吸光度光谱相比,这允许在线确定粉末床的吸光度,最大偏差为2.5%。对于此方法的资格,已经在粉末表面和20种不同粉末的测试上进行射线追踪模拟。这些包括不同的颗粒大小,年龄和氧化粉末。
摘要 金属粉末床熔合 (MPBF) 不是一个独立的过程,通常需要其他制造技术(例如热处理和表面处理操作)来实现高质量的组件。为了优化给定组件的每个单独过程,必须考虑和了解其在整个过程链中的进展,这可以通过使用经过验证的模型来实现。本文旨在概述可用于开发 MPBF 流程链数字孪生的各种建模技术,包括物理和数字实体之间的数据传输方法和不确定性评估。通过使用技术就绪水平对建模技术的当前成熟度进行评估,以了解其成熟度。总结了 MPBF 研究领域(即预测:粉末变形;温度;材料特性;变形;残余应力;以及拓扑优化)、后处理(即建模:加工;热处理;和表面工程)和数字孪生(即制造流程链模拟;互操作性和计算性能)中使用的基于物理的建模技术的优点和缺点。还讨论并总结了这些 MPBF 研究领域面临的挑战的未来前景。