决策算法在社会中的存在感如今正在迅速增加,同时人们也开始担心其透明度以及这些算法可能成为新的歧视来源。事实上,许多相关的自动化系统已被证明会根据敏感信息做出决策或歧视某些社会群体(例如,某些用于人员识别的生物特征识别系统)。为了研究当前基于异构信息源的多模态算法如何受到数据中的敏感元素和内部偏见的影响,我们提出了一个虚构的自动招聘测试平台:FairCVtest。我们使用一组有意识地以性别和种族偏见进行评分的多模态合成档案来训练自动招聘算法。FairCVtest 展示了此类招聘工具背后的人工智能(AI)从非结构化数据中提取敏感信息并以不良(不公平)的方式将其与数据偏见结合起来的能力。最后,我们列出了最近开发能够从深度学习架构的决策过程中删除敏感信息的技术的列表。我们使用其中一种算法(SensitiveNets)来实验歧视感知学习,以消除我们多模态 AI 框架中的敏感信息。我们的方法和结果展示了如何生成更公平的基于 AI 的工具,特别是更公平的自动招聘系统。
多年来,单板计算机 (SBC) 领域的发展一直在不断加快。它们在计算性能和功耗之间实现了良好的平衡,这通常是移动平台所必需的,例如用于高级驾驶辅助系统 (ADAS) 和自动驾驶 (AD) 的车辆应用。然而,对更强大、更高效的 SBC 的需求日益增长,这些 SBC 可以实时运行功耗密集型深度神经网络 (DNN),还可以满足必要的功能安全要求,例如汽车安全完整性等级 (ASIL)。ZF 正在开发“ProAI”,主要用于运行强大而高效的应用程序,例如多任务 DNN,此外,它还具有 AD 所需的安全认证。在这项工作中,我们基于功耗密集型多任务 DNN 架构 Multitask-CenterNet,就 FPS 和功率效率等性能指标比较和讨论了最先进的 SBC。作为一款汽车超级计算机,ProAI 实现了性能和效率的完美结合,其每瓦 FPS 数量几乎是现代工作站笔记本电脑的两倍,几乎是 Jetson Nano 的四倍。此外,根据基准测试期间的 CPU/GPU 利用率,还显示 ProAI 上仍有剩余电量用于执行进一步更复杂的任务。
2024 年 7 月 30 日 — HANA 微电子集团,高科技制造面积合计超过 1,000,000 平方英尺,年收入超过 7 亿美元。阅读更多关于...
1。Rekdal,V.,Villalobo-Escobed,J.,Valeron Rodris,NNeurospora来自传统发酵食品中级,使食物转化为废物。微生物学性质,1-18。2。polaRNA -RNA分析:协议电流,4(5),E1054。*校正。3。Enrique-Felix,E。E.,Perz-Salazar,C.,Rico-Red,J.G.,Carvalo退款(2024)。类型和敏感的敏感交流三胚层的偏盘,并在真菌帕拉什主义过程中使用和使用。频谱微生物学,12(4),EH03165-23。*再次对应。4。Villalobo-Escow,JM,Merces,M。B.,Adams,C.,Cauffman,W。B.,Malmstrom,R。R.,A。M.,&Greetings,N。L.(2023)。范围内的适应性谱分子分子分子用三霉菌外代谢物进行了攻击。PLOS Genetics,19(8),E1010909。*再次对应。
信息检索是一个不断发展且至关重要的搜索域。对高质量人类运动数据的大量需求,尤其是在在线获取中,导致人类运动研究工作的激增。先前的作品主要集中在双模式学习上,例如文本和运动任务,但是很少探索三模式学习。直觉上,额外的引入方式可以丰富模型的应用程序方案,更重要的是,对额外模式的适当选择也可以充当中介,并增强其他两个不同方式之间的对齐方式。在这项工作中,我们介绍了Lavimo(语言视频 - 动作对齐),这是一个三模式学习的新型框架,将以人为中心的视频整合为一种额外的方式,从而可以在文本和运动之间弥合差距。更重要的是,我们的方法利用了一种专门设计的注意机制来增强文本,视频和运动方式之间的一致性和协同作用。经验,我们对HumanML3D和Kit-ML数据集的结果表明,Lavimo在各种与运动相关的跨模式检索任务中实现了最先进的表现,包括文本到动作,动作到运动,视频,视频到视频,动作和动态。我们的项目网页可以在https://lavimo2023.github.io/lavimo/中找到。
对比语言图像预训练 (CLIP) 编码器已被证明对从分类和检测到字幕和图像处理等一系列视觉任务有益。我们研究了 CLIP 视觉主干对 Embodied AI 任务的有效性。我们构建了非常简单的基线,称为 EmbCLIP,没有任务特定的架构、归纳偏差(例如使用语义图)、训练期间的辅助任务或深度图——但我们发现我们改进的基线在一系列任务和模拟器中表现非常出色。EmbCLIP 在 RoboTHOR ObjectNav 排行榜上以 20 分(成功率)的巨大优势名列前茅。它在 iTHOR 1-Phase Rearrangement 排行榜上名列前茅,击败了采用主动神经映射的第二佳提交作品,并且 % Fixed Strict 指标增加了一倍多(0.08 到 0.17)。它还击败了 2021 年 Habitat ObjectNav 挑战赛的获胜者,该挑战赛采用了辅助任务、深度图和人工演示,以及 2019 年 Habitat PointNav 挑战赛的获胜者。我们评估了 CLIP 的视觉表示在捕获输入观察的语义信息方面的能力——这些原语对于导航繁重的具身任务很有用——并发现 CLIP 的表示比 ImageNet 预训练的主干更有效地编码了这些原语。最后,我们扩展了我们的一个基线,生成了一个能够进行零样本物体导航的代理,它可以导航到训练期间未用作目标的物体。我们的代码和模型可以在 https://github.com/allenai/embodied-clip 获得。
为本报告的目的,我们通过选定的 1:1 访谈专门测试准备程度。我们举办了 3 次物流圆桌会议,重点关注该行业的子集,例如:港口、跨站点和最后
最新的表示学习研究表明,层次数据将自己带入双曲线空间中的低维和高度信息的表示。但是,即使双曲线嵌入在图像识别方面也收集了,它们的优化也容易出现数值障碍。此外,与传统的Eu-Clidean特征相比,尚不清楚哪种应用将受益于双曲线的隐性偏见最大。在本文中,我们专注于原型双曲神经网络。尤其是,双曲线嵌入的趋势会在高维度收敛到庞加尔e球的边界,并且对这对几乎没有的分类具有影响。我们表明,在常见的双曲半径上获得双曲线嵌入的最佳射击效果。与先前的基准结果相反,我们证明了配备有欧几里德指标的固定radius编码器可以实现更好的性能,而与嵌入式维度无关。
RTS RMF 草案:第 10 条 漏洞和补丁管理 2. (b) […] 对支持关键或重要功能的漏洞进行自动扫描 […] 至少每周执行一次。 (c) […] 确保 ICT 第三方服务提供商处理与提供给金融实体的 ICT 服务相关的任何漏洞并向金融实体报告。 […] (d) 跟踪第三方库(包括开源库)的使用情况,监控版本和可能的更新; (e) 建立向客户、对应方以及公众负责任地披露漏洞的程序; (f) 部署补丁来解决已发现的漏洞。如果没有可用的漏洞补丁,金融实体应确定并实施其他缓解措施;
