队列(n = 21031)总负性性别女性9971 8120 1851男性11060 8978 2082总计21031 17098 3933#招生2.07(2.88)1.98(2.44)1.98(2.44)2.52(4.28)住宿时间7.83(8.57)7.53(8.04)9.11(10.48)索引入院时年龄73.36(13.55)73.39(13.55)73.2(13.56)
最近的研究表明,微生物对于维持人类健康至关重要。营养不良或这些微生物群落中的失衡与多种人类疾病密切相关。因此,了解微生物对疾病的影响至关重要。Dugel模型利用图形卷积神经网络(GCN)和图形注意网络(GAT)的优势,确保捕获微生物 - 疾病关联网络中的本地和全局关系。长短记忆网络(LSTM)的集成进一步增强了模型理解特征表示中的顺序依赖性的能力。这种全面的方法使Dugel能够在预测潜在的微生物疾病关联方面达到很高的准确性,从而使其成为生物医学研究和发现新的治疗靶标的有价值的工具。通过结合基于图形和基于序列的学习技术,Dugel解决了现有方法的局限性,并为预测微生物 - 疾病关联提供了强大的框架。为了评估Dugel的性能,我们基于两个数据库(HMDAD和tobiome)进行了全面的比较实验和案例研究,以证明Dugel可以有效地预测潜在的微生物疾病关联。
参与临床审核和机密查询,该信托基金的目的是使用临床审核作为嵌入临床质量,对患者护理的改善以及提供保证服务质量证据的机制的过程。在2023/24期间88个国家临床审计和8个国家机密查询,由HQIP(医疗保健质量改善合作伙伴关系)优先考虑国家临床审计和患者成果计划(NCAPOP),以供信任参加(在适用的情况下)。在此期间,SATH参加了国家临床审核的97%(60/62)和100%(7/7)的国家机密询问,有资格参加。在下表1和2中列出了优先供信托的国家临床审计和国家机密查询。表3列出了参加国家审计后采取的一些措施的例子。
在嵌入式系统在电动汽车、医疗保健、工业或基础设施监控等关键领域发挥越来越重要作用的时代,对实时数据处理的需求至关重要。本文讨论了这些应用中高传感器数据速率和微控制器 (MCU) 有限处理能力所带来的挑战。它介绍了一种利用串行铁电 RAM (FeRAM) 架构以及计算 SRAM 概念的新型计算方法,称为就地计算 (CIP)。对 CIP 串行 FeRAM 的探索揭示了其在高吞吐量处理大量传感器数据时提高可预测性、能源效率和安全性的潜力。与传统计算架构不同,CIP 串行 FeRAM 通过在内存中启用计算任务,减轻了 MCU 的计算负荷、降低了延迟并提高了能源效率。本文强调了 CIP 串行 FeRAM 对各种实时任务的灵活性,为更高性能、更高效和适应性更强的关键嵌入式系统铺平了道路。
课程内容:工业自动化和控制概论,工业自动化系统的结构,传感器和测量系统概论,例如温度,压力,力,置换和速度,流量测量技术,水平,湿度,pH等。Signal Conditioning and Processing, Estimation of errors and Calibration Introduction to Process Control, P-I-D Control, Controller Tuning, Implementation of PID Controllers, Special Control Structures : Feed forward and Ratio Control, Predictive Control, Control of Systems with Inverse Response , Cascade Control, Overriding Control, Selective Control, Split Range Control Introduction to Sequence Control, PLCs and Relay Ladder Logic, Scan Cycle, RLL Syntax , Structured Design Approach, Advanced RLL编程,硬件环境的执行器介绍:流量控制阀,液压执行器系统:原理,组件和符号,泵和电动机,泵和电动机,比例和伺服阀气动控制系统:系统组件,控制器,控制器和集成的控制系统网络,传感器和控制器的网络:实地总线:现场总线,现场交通协议,现场交通协议。参考:1。弗兰克·兰姆(Frank Lamb),“工业自动化:动手” 2。乔恩·斯滕森(Jon Steners),“工业自动化和过程控制”
Beckhoff Automation GmbH&Co。KG(Beckhoff)的产品,就可以在线访问的范围内,配备了支持工厂,系统,机器和网络安全操作的安全功能。尽管有安全功能,但对于保护各自的工厂,系统,机器和网络的创建,实现和不断更新是对操作的整体安全概念的不断更新。贝克霍夫出售的产品只是整体安全概念的一部分。客户负责防止第三方未经授权的访问其设备,系统,机器和网络。仅在制定适当的保护措施后,才应将后者连接到公司网络或互联网。
Beckhoff Automation GmbH & Co. KG (Beckhoff) 的产品只要可以在线访问,就配备了安全功能,支持工厂、系统、机器和网络的安全运行。尽管有安全功能,但需要创建、实施和不断更新整体安全概念,以保护相应的工厂、系统、机器和网络免受网络威胁。Beckhoff 销售的产品只是整体安全概念的一部分。客户有责任防止第三方未经授权访问其设备、系统、机器和网络。只有在采取了适当的保护措施后,才应将后者连接到公司网络或互联网。
摘要 — 现在,物联网应用需要增强识别和自适应等功能。虽然物联网节点功耗是这些应用的主要关注点,但由于通过无线网络连续传输传感器或图像数据,基于云的处理变得难以为继。因此,应在物联网节点中集成优化的 ML 功能和数据传输。此外,物联网应用在零星数据记录和耗能数据处理(例如图像分类)之间左右为难。因此,节点的多功能性是解决这种多样化能源和处理需求的关键。本文介绍了 SamurAI,这是一种多功能物联网节点,它通过利用两个片上子系统来弥补处理和能源方面的差距:低功耗、无时钟、事件驱动的始终响应 (AR) 部分和节能的按需 (OD) 部分。 AR 包含一个 1.7MOPS 事件驱动的异步唤醒控制器 (WuC),唤醒时间为 207ns,针对零星计算进行了优化,而 OD 结合了深度睡眠 RISC-V CPU 和 1.3TOPS/W 机器学习 (ML),可执行高达 36GOPS 的更复杂任务。这种架构分区实现了同类最佳的多功能性指标,例如峰值性能与空闲功率比。在应用分类场景中,它展示了系统功率增益,与基于云的处理相比高达 3.5 倍,从而延长了电池寿命。
摘要。在气候模型中,雪反照率方案一般仅计算窄带或宽带反照率,这导致了显着的不确定性。在这里,我们介绍了基于规格固定的辐射变量(Valhalla 1.0版)的多功能反照率计算方法,以优化光谱雪反照率计算。对于这种操作,积雪吸收的能量是由雪(tartes)和光谱辐照模型的光谱反照率模型的两流射线传递来衡量的。该计算考虑了基于降雪的辐射转移的分析近似,就考虑了入射辐射的光谱特征和雪的操作特性。对于这种方法,计算了30个波长,称为扎点(TPS),并计算16个参考iranciance pro文件,以结合吸收的能量和参考辐照度。然后,将吸收能量的能量插值,每个波长在两个TPS之间具有足够的核函数,这些核函数源自辐射转移,以降雪和大气。我们表明,吸收能量计算的准确性主要取决于参考文献对模拟的辐照度的适应(对于宽带吸收能量的绝对差<1 w m-2的绝对差<1 w m-2,绝对差<0。005用于宽带反照率)。除了准确性和计算时间的性能外,该方法还适用于任何大气输入(宽带,窄带),并且很容易适应整合到全球或区域气候模型的辐射方案中。
Jean-Pierre BEDECARRATS 教授,LATEP,波城及阿杜尔地区大学 Kévyn JOHANNES 讲师(HDR),CETHIL,Claude Bernard 里昂第一大学 评审团组成: 主席:Régis OLIVES 教授,PROMES,佩皮尼昂 Via Domitia 大学 考官:Christian CRISTOFARI 教授,SPE,科西嘉岛大学 考官:Yilin FAN CNRS 研究官员(HDR),LTEN,南特大学 论文指导:Lingai LUO CNRS 研究主任,LTEN,南特大学 联合论文指导:Jérôme SOTO 副研究员,LTEN,南特大学 & 教师,ICAM 联合论文指导:Nicolas BAUDIN 讲师,LTEN,南特大学