(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 1 月 12 日发布。;https://doi.org/10.1101/2022.01.10.475740 doi:bioRxiv preprint
摘要 在本文中,我们制定了量子甲虫触角搜索 (QBAS),一种元启发式优化算法,以及甲虫触角搜索 (BAS) 的一种变体。我们将其应用于投资组合选择,这是一个众所周知的金融问题。量子计算在效率和速度上超越了传统计算,因此在科学界越来越受欢迎。所有传统计算算法都不直接与量子计算机兼容,因此我们需要使用量子力学原理来制定它们的变体。在投资组合优化问题中,我们需要找到一组最优股票,使其风险因子最小化并最大化投资组合的平均收益。据我们所知,目前还没有量子元启发式算法被用来解决这个问题。我们将 QBAS 应用于现实世界的股票市场数据,并将结果与其他元启发式优化算法进行比较。结果表明,QBAS 优于粒子群优化 (PSO) 和遗传算法 (GA) 等群体算法。
摘要。本文的重点是对马铃薯农业生物症中科罗拉多州马铃薯甲虫种群的全面研究。研究深入研究了甲虫种群的形成和生物生物特征的复杂过程。该文章还深入研究了一个被称为Beauveria bassiana VTQ-28的特定菌株,该菌株是从科罗拉多州马铃薯甲虫中分离出来的。该菌株在实验室环境和现场进行了测试,针对科罗拉多州马铃薯甲虫的各个发育阶段。目的是评估Bassiana VTQ-28作为对甲虫的生物防治剂的有效性。此外,该研究还评估了苏云金芽孢杆菌对科罗拉多州马铃薯甲虫的局部采购菌株的杀虫活性。此分析提供了苏云金芽孢杆菌菌株作为生物控制的另一种途径的潜力的见解。通过彻底检查人口动态,生物生物学特征以及特定微生物控制科罗拉多州马铃薯甲虫的潜力,这项研究有助于理解马铃薯农业生物症中的有害生物管理策略。这些发现对可持续农业实践和这种具有经济意义的害虫的有效控制具有影响。关键字。Beauveria Bassiana,B。苏云金,生物防治,微生物,科罗拉多州马铃薯甲虫。
研究 [12–15],这使得拟谷盗成为比较遗传学、分子生物学、进化和发育等不同生物过程的绝佳模型 [2, 10, 11]。鉴于果蝇的衍生生物学,拟谷盗也
研究 [12–15],这使得拟谷盗成为比较遗传学、分子生物学、进化和发育等不同生物过程的绝佳模型 [2, 10, 11]。鉴于果蝇的衍生生物学,拟谷盗也
这项研究在德国西部的蒙塔巴勒·霍希森林(MontabaurerHöhe)森林中进行了检查,检查了五种森林管理方法,包括在受树皮甲虫影响的地区进行的五种森林管理方法。这项研究的重点是地面和飞行活性甲虫,这些甲虫对森林生态系统至关重要,充当分解媒介和传粉媒介。科布伦斯大学的研究人员着手了解这些实践如何影响甲虫种群和整体生物多样性。
内寄生生物是许多昆虫物种的重要天然敌人,并且是宿主免疫系统上的主要选择性力量。尽管人们对昆虫抗嗜酸脂的免疫感的兴趣增加,但关于果蝇外部宿主免疫防御的生物途径和基因调节的进化动力学的信息很少。我们从两种甲虫物种中从头组装的转录组,并使用了时间表差分表达分析来研究基因表达在密切相关的物种Pusilla和G. calmariensis中的基因表达不同,它们分别具有抗性和易感性,可抵抗和易感性地受到parviclava parviclava parasitoids的抗性感染。分别组装了大约2.71亿和2.24亿配对的读数,并分别对G. Pusilla和G. Calmariensis进行了52,563和59,781个成绩单。在整个转录组中,在这两个物种中都展示了与能量生产,生物合成过程和代谢过程相关的功能类别的富集。物种之间的主要区别似乎是G. pusilla幼虫所安装的免疫反应和伤口愈合过程。分别在G. pusilla和G. calmariensis中鉴定出对果蝇的相互爆炸,120和121个与免疫相关的基因。在G. pusilla中差异表达了更多的免疫基因,而不是在G. calmariensis中,特别是参与信号传导,造血和黑色素化的基因。相比之下,在G. calmariensis中仅差异地表达了一个基因。我们的研究表征了寄生虫感染后参与不同免疫功能的重要基因和途径,并支持信号传导和造血基因的作用,是对寄生虫WASP的宿主免疫中的关键参与者。
抽象的微生物组在昆虫适应中起着至关重要的作用,尤其是在病原体侵袭等压力下。然而,有益微生物组的组装如何尚不清楚。木质甲虫甲虫替代品是松木疾病(PWD)线虫的主要害虫和载体,提供了独特的模型。我们在甲虫和微生物相互作用的画廊中使用扩增子测序(16S rRNA和ITS)进行了受控的体验。PWD显着改变了细菌和真菌群落,提出了不同的组装过程。确定性因素,例如优先效应,宿主选择和微生物相互作用形状的微生物组组成,将健康与PWN感染的画廊区分开。静脉细菌,富公司和ophiostomataceae可能是有益的,可以帮助甲虫的发育和病原体耐药性。这项研究揭示了线虫诱导的画廊微生物组的变化如何影响甲壳虫的发育,从而在昆虫 - 病原体相互作用的情况下散发出微生物组的灯光。洞察力收集到增强对PWD传播的理解,并通过微生物组操纵提出新的管理策略。
spinosads是用于控制虫害的杀虫剂,尤其是在有限的害虫管理工具有限的有机农业中。然而,耐药性已发展为经济上重要的害虫中的脊柱,包括科罗拉多州马铃薯甲虫(CPB),Leptinotarsa decemlineata。在这项研究中,我们使用生物测定来确定CPB的两个田间人群的刺激性敏感性,一个来自一个专门暴露于Spinosad的有机农场,另一个来自暴露于各种杀虫剂的常规农场,以及参考杀虫剂NA的人群。我们发现现场种群表现出与敏感人群相比的显着抗性水平。然后,我们比较了两个场群之间的转录组轮廓,以鉴定主要与脊柱抗性抗性相关的基因,并在独家公开的旋罗斯AD型公认的种群中上调了细胞色素P450,CYP9E2和长的非编码RNA基因LNCRNA-2。使用RNA干扰(RNAI)同时在甲虫暴露群体的甲虫中敲破这两个基因(RNAI)在基因敲除基因敲低的情况下暴露于spinosad暴露时导致死亡率显着增加,而每个基因产生了较小的效应。另外,lncRNA-2基因的敲除导致CYP9E2转录物的显着降低。Finally, in silico analysis using an RNA-RNA interaction tool revealed that CYP9E2 mRNA contains multiple binding sites for the lncRNA-2 tran- script.我们的结果表明,CYP9E2和LNCRNA-2共同促进CPB中的SpinoSAD耐药性,而LNCRNA-2参与了CYP9E2表达的调节。这些结果证明了由CYP和LNCRNA基因过表达驱动的代谢性抗性的证据,有助于CPB中的Spinosad抗性。
Brassica Leaf Beetle Phaedon Brassicae是十字花科植物的臭名昭著的截肢者。然而,由于序列数据有限,很少对该害虫进行分子研究。最近,RNA测序提供了一个强大的平台来生成许多转录组数据,该数据需要RT-QPCR来验证靶基因表达。选择可靠的参考基因以归一化RT-QPCR数据是基因表达分析的先决条件。在本研究中,使用四种不同的统计算法评估了生物条件下八个候选参考基因(发育阶段和各种组织)和临界扰动(热应激和农药暴露)的表达稳定性。建议针对各自的实验条件使用参考基因的最佳套件。用于组织表达分析,建议将RPL32和EF-1α作为合适的参考基因。RPL19和TBP是不同发育阶段的最佳参考基因。RPL32和TBP被确定为热应力最合适的参考。此外,RPL32和RPL19被评为杀虫剂暴露的最佳参考。这项工作提供了针对各自的实验条件的最佳参考基因的系统探索,我们的发现将促进p的分子研究。铜管。
