用于查找相关文献的文档推荐系统大多依赖于十年前开发的方法。这主要是因为缺乏一个涵盖各种研究领域的大型离线黄金标准相关文献基准,以便可以比较、改进新开发的文献检索技术并将其转化为实践。为了克服这个瓶颈,我们成立了 RE 相关文献搜索联盟,该联盟由来自 84 个国家的 1500 多名科学家组成,他们共同注释了超过 180,000 篇 PubMed 收录文章与其各自的种子(输入)文章的相关性。大多数注释都是由经验丰富的种子文章原作者提供的。收集到的数据涵盖了 76% 的所有唯一 PubMed 医学主题词描述符。在不同经验水平、研究领域或注释时间之间未观察到系统性偏差。更重要的是,不同科学家对相同文档对的注释高度一致。我们进一步表明,用于生成推荐文章以供评估的三种代表性基线方法(Okapi Best Matching 25、词频 - 逆文档频率和 PubMed 相关文章)具有相似的总体性能。此外,我们发现这些方法各自倾向于生成不同的推荐文章集合,这表明可能需要一种混合方法来完全捕获所有相关文章。位于 https://relishdb.ict.griffith.edu.au 的已建立数据库服务器可免费下载注释数据和盲测新方法。我们预计,该基准将有助于促进开发新的强大技术,用于生物医学研究中的相关文章的标题和基于标题/摘要的搜索引擎。
用于查找相关文献的文档推荐系统大多依赖于十年前开发的方法。这主要是因为缺乏一个涵盖各种研究领域的大型离线黄金标准相关文献基准,以便可以比较、改进新开发的文献检索技术并将其转化为实践。为了克服这个瓶颈,我们成立了 RE 相关文献搜索联盟,该联盟由来自 84 个国家的 1500 多名科学家组成,他们共同注释了超过 180,000 篇 PubMed 收录文章与其各自的种子(输入)文章的相关性。大多数注释都是由经验丰富的种子文章原作者提供的。收集到的数据涵盖了 76% 的所有唯一 PubMed 医学主题词描述符。在不同经验水平、研究领域或注释时间之间未观察到系统性偏差。更重要的是,不同科学家对相同文档对的注释高度一致。我们进一步表明,用于生成推荐文章以供评估的三种代表性基线方法(Okapi Best Matching 25、词频 - 逆文档频率和 PubMed 相关文章)具有相似的总体性能。此外,我们发现这些方法各自倾向于生成不同的推荐文章集合,这表明可能需要一种混合方法来完全捕获所有相关文章。位于 https://relishdb.ict.griffith.edu.au 的已建立数据库服务器可免费下载注释数据和盲测新方法。我们预计,该基准将有助于促进开发新的强大技术,用于生物医学研究中的相关文章的标题和基于标题/摘要的搜索引擎。
用于查找相关文献的文档推荐系统大多依赖于十年前开发的方法。这主要是因为缺乏一个涵盖各种研究领域的大型离线黄金标准相关文献基准,以便可以比较、改进新开发的文献检索技术并将其转化为实践。为了克服这个瓶颈,我们成立了 RE 相关文献搜索联盟,该联盟由来自 84 个国家的 1500 多名科学家组成,他们共同注释了超过 180,000 篇 PubMed 收录文章与其各自的种子(输入)文章的相关性。大多数注释都是由经验丰富的种子文章原作者提供的。收集到的数据涵盖了 76% 的所有唯一 PubMed 医学主题词描述符。在不同经验水平、研究领域或注释时间之间未观察到系统性偏差。更重要的是,不同科学家对相同文档对的注释高度一致。我们进一步表明,用于生成推荐文章以供评估的三种代表性基线方法(Okapi Best Matching 25、词频 - 逆文档频率和 PubMed 相关文章)具有相似的总体性能。此外,我们发现这些方法各自倾向于生成不同的推荐文章集合,这表明可能需要一种混合方法来完全捕获所有相关文章。位于 https://relishdb.ict.griffith.edu.au 的已建立数据库服务器可免费下载注释数据和盲测新方法。我们预计,该基准将有助于促进开发新的强大技术,用于生物医学研究中的相关文章的标题和基于标题/摘要的搜索引擎。
退火器的大小生长。因此,我们需要的问题可在任意数量的Qubits上可扩展。In this paper, we use one such class of scalable problems called garden optimization problems to benchmark the Advantage system against the DW2000Q system, as well as the recently released Hybrid Solver Service hybrid _ binary _ quadratic _ model _ version2 ( HSSv2 ) against its former version hybrid _ binary _ quadratic _ model _ version1 ( HSSv1 ) and other classical software solvers.量子退火器的输入问题通常是根据二次无约束的二进制优化(QUBO)问题提出的。在本文中,我们介绍了花园优化问题的QUBO公式。对于这个问题,目的是找到植物植物在花园中的最佳放置,尊重某些植物物种与其他物种具有友好,中性或拮抗关系(见图1),一种称为同伴种植的技术。例如,番茄和生菜具有友好的关系,可以彼此相邻,而番茄和黄瓜则具有对抗关系,应彼此分开。我们认为,花园优化问题非常适合基准量子退火器,因为它可扩展到任意数量的变量。此外,它代表了在现实世界中发现应用程序的问题。数学上,花园优化问题与二次分配问题密切相关
实验基准是近年来人工智能 (AI) 惊人进步的核心。在机器学习等领域,科学贡献的相关性通常与流行数据集或竞赛所取得的性能水平相关。与此相关,人工智能的技术贡献不仅限于同行评议期刊或会议上的单篇科学论文,而是一个更复杂的团队和社区项目生态系统,这些团队和社区项目开发架构或系统,并不断更新报告(通常在 arXiv.org 和其他开放存储库上)、源代码、预训练模型和结果(通常在 github.com 上)。这项活动通常由基准驱动。传统的科学计量研究很少捕捉到基准对影响人工智能研究的重要性,因为它们主要关注已发表的论文及其之间的引用。在本文中,我们分析了基准如何影响人工智能的研究动态以及从学术界到科技巨头等不同参与者的行为方式。我们对 25 个流行的 AI 基准进行了分析,总共有 1,943 个结果条目。我们从书目存储库中提取了合著者社区,并绘制了它们随时间变化的性能结果。对于每个基准,“成功”与它们对 SOTA 前沿的贡献有关,SOTA 前沿是一条由二维图上的性能跳跃定义的最先进曲线,以时间和性能为维度。我们探索了一系列假设,这些假设涉及在基准上进行重复尝试的社区与进行更多孤立尝试的社区的行为、成功社区的组成(单一机构与多个机构)、它们的多样性(行业、学术界或混合)以及每个社区活跃成员数量的时间动态。最近的研究 1、2 表明“小团队会破坏,而大团队会发展”,但这一发现在
合成数据与人工智能医疗设备的创新、评估和监管 Puja Myles,公共卫生硕士、博士;Johan Ordish,文学硕士;Richard Branson,理学硕士、文学硕士 摘要 合成数据是模仿真实数据的属性和关系的人工数据。它有望促进数据访问、验证和基准测试,解决缺失数据和欠采样、样本增强以及在临床试验中创建对照组的问题。英国药品和保健产品管理局 (MHRA) 正在利用其目前对高保真合成数据开发的研究,制定其对经过合成数据训练的人工智能医疗设备的监管立场,并将合成数据作为人工智能医疗设备验证和基准测试的工具。 关键词 人工智能作为医疗设备 (AIaMD)、数据隐私、健康数据、合成数据、验证、监管 简介 人工智能 (AI) 在医疗和社会保健领域的应用预计将会兴起,这意味着人工智能作为医疗设备 (AIaMD) 将成为医疗设备中越来越突出的子类别。 1 因此,医疗器械法规是否适合人工智能变得越来越重要,制造商是否了解并遵守其义务也变得越来越重要,其中最主要的是证明其 AIaMD 具有良好的效益风险比。2 强大的数据集是展示 AIaMD 性能的核心,通常是此类设备开发的主要障碍。3 医疗器械监管机构有责任确保制造商拥有履行这些义务所需的工具,并提供更广泛的支持以鼓励此类创新设备的开发。合成数据集的开发很可能成为这样一种辅助工具。本文概述了 MHRA 在研究和开发合成数据方面的努力,并考虑在更广泛的改革背景下使用合成数据,以确保医疗器械法规适用于人工智能。合成数据概况 近年来,人们对合成数据的兴趣日益浓厚,原因有很多,包括在数据治理法规更加严格的世界中可能易于获取、保护患者隐私、在机器学习算法背景下的基准测试和验证能力,以及解决真实数据局限性的能力,如数据缺失、欠采样和样本量小。4 更重要的是,尽管合成数据的潜在应用已经讨论了多年,但直到最近,合成数据生成方法的进步才能够产生高质量的合成数据。5 定义合成数据 从概念上讲,合成数据是模仿真实数据的属性和关系的人工数据。合成数据的质量取决于生成合成数据的方法。合成数据的质量通常用其“效用”或“保真度”来描述。“能够捕捉各种数据字段之间复杂的相互关系以及真实数据的统计特性的合成数据集可称为“高实用性”或“高保真度”合成数据集。在患者医疗保健数据方面,高保真度合成数据集将能够捕捉复杂的临床关系,并且在临床上与真实患者数据难以区分。高效用合成数据的生成往往需要大量资源,并且根据需要合成数据的应用,使用低效用或中等效用合成数据可能是可以接受的。
决议中提到的监管系统的基准测试wha 67.20意味着一个结构化和记录的过程,通过该过程,成员国(MSS)可以识别和解决差距,目的是达到与稳定,功能良好,功能良好和集成和集成的监管系统相称的监管监督。使用WHO全球基准测试工具是评估监管医疗产品监管系统的主要手段。该工具和基准测试方法使谁和监管机构能够确定优势领域以及改进领域;促进制定制度发展计划(IDP)以建立优势并解决所确定的差距;协助优先考虑IDP实施的投资;并帮助监视进度。WHO从1997年开始评估监管系统,使用一组旨在评估疫苗监管计划的指标。自那时以来,已经引入了几种工具和修订,并且已通过150多个国家的监管系统进行了基准测试。在2013年开始了GBT评估药品和疫苗计划的统一制定,此前是内部和外部的基准测试工具,以确保政策连贯性,最大化监管结果并减轻监管机构的负担1。本手册的结构是帮助理解基准活动的背景以及对GBT的深入了解,以及与计划和计划,准备,准备,进行和报告基准测试活动有关的过程和程序。众所周知,手册的大小很大,因此强烈建议使用文档的目录(TOC)进行导航并查看读者/用户针对的部分。此外,本手册不是独立文档。相反,它与其他相关的手册和程序相辅相成。在需要时,建议手册的用户参考其他文档,这些文件可能会受益于更好的理解和适当的相关过程实施。最后,如果与本手册或相关文档有关的任何查询,包括与GBT相关的查询,则应将其介绍给NRA_ADMIN@WHO.INT的WHO WHO监管RSSTEMS(RSS)团队。
PCIA的计算是在D.11-12-018中建立的,最近在D.19-10-001中进行了完善。3 PCIA或公用事业的冷漠量相当于公用事业公司在给定年内的市场价值降低其市场价值。市场价值在d.19-10-001中定义为“以美元计量的估计财务价值,这归因于能源资源的公用事业投资组合,目的是计算给定年份的电费无差调整。” D.19-10-001将市场价格基准(MPB)定义为“与公用事业投资组合中三个主要价值相关的每单位价值(不是总投资组合价值)的估计(能源,资源充足性和可再生能源)”。作为市场价值总体计算的一部分,将4个MPB乘以相关投资组合量。预测的加法器是旨在减少冷漠量的不确定性的机制,而真正的UP加成器是旨在将实际实现的市场收入与预测值相结合的机制。ra加法器是MPB,它反映了公用事业投资组合中每个容量单位的估计值,可用于满足资源充足义务,为每千瓦年度的美元价值($/kW年)。RA加法器具有三个子组件,反映了遵守RA计划所需的每种RA产品:系统,本地和灵活。5