沸石是微孔晶体,这些晶体是由四面体SiO 4和Alo 4物种通过共享O原子相互联系的,它们在吸附,分离,离子交换和异构固体阳性催化中表现出了显着的应用前景[1]。通常,通过异态替代物,可以将Si和Al原子框架的一部分取代,例如Ti,Sn,Ge,Zr,Zr,B,P,V和Ga,导致杂原子沸石或金属硅酸盐[2-4]。Among these heteroatomic zeolites, titanosilicate is the most representative one, and it can catalyze diverse selective oxidation reactions, such as alkene epoxidation, aldehyde or ketone ammoxidation, benzene or phenol hydroxylation, 1,4-dioxane oxidation, selective oxidation of pyridine derivatives, and oxidation desulfurization [5-9]以及酸催化的反应,例如环氧化物的铃声反应[10-12],乙二胺冷凝[13]和贝克曼的氧电[14](如图1.1所示)。此外,钛硅酸盐的发现扩大了沸石的应用范围,因为异质催化剂从酸催化到氧化还原场。几项评论和专着提出了对合成和催化应用中钛硅酸盐的机会和挑战[3-9,15-18]。如图1.2所示,从1983年到2023年,与钛质有关的年度出版物数量迅速增加,在过去的十年中,这一数字一直保持在200–350。值得注意的是,钛硅酸盐可以根据其质地性能和孔径分为微孔,介孔和静脉型类型。其中,具有孤立的四面体Ti物种的微孔钛硅酸盐具有尺寸<2 nm的毛孔,其中包括中小孔和中孔的钛硅酸盐沸石,带有8或10元的环(MR),12 MR大孔沸石,大孔沸石,超大型孔的杂物和超大型孔的Zeolites和≥14mms。在具有三个字母代码的255个订购的沸石框架结构和国际沸石协会结构委员会(IZA)认可的部分无序的沸石结构中,28个结构
抽象的光催化在各个领域都有应用,例如在空气纯化设备中,甚至在涂料中,可以将其掺入油漆制剂中,以利用其空气纯化和自我清洁的特性。本报告不仅要着眼于光催化过程,而且还考虑了使用二氧化钛(TIO 2)对其掺入涂料的研究。TIO 2可在实验室中合成,以提高其在各种污染物的空气纯化和净化方面的性能。此外,还强调了使用光催化系统(例如含锰的包含)增强TIO 2半导体材料的研究。这些研究提出了有关增强净化性能的发现,这对于通过消除有害气体和有机化合物来增强室内空气质量至关重要。挥发性有机化合物,例如甲醛,甲苯,苯和NOX,具有极具毒性的健康作用。每年,室内和室外空气污染会导致大量死亡。考虑到人们在室内花费超过80%的时间,室内空气的过滤更为重要。因此,本文介绍了一些有关光催化材料和技术的进一步开发的研究,用于光催化涂料的商业应用。研究了含有镁(MN),硅酸盐油漆和水性苯乙烯丙烯酸涂料的Tio 2的商业光催化涂料,重点是减少VOC发射的能力。
固态合成代表了溶液 - 相化学的替代方案,可以为通常无法通过常规方法提供的材料提供途径。但是,在高压条件下,多个竞争反应途径使化学均匀系统的靶向合成成为挑战。纳米读,通过压缩芳族碳氢化合物形成的一维钻石聚合物为以控制和可预测的方式进行高压反应提供了独特的机会。我们假设,通过仔细考虑分子堆叠和分子间力(例如,H键),可以形成化学均匀的纳米读物,以保留精确的化学功能。在此,我们通过顺序[4 + 2] Diels Alder Cycloadition反应报告了2,5-二甲基辅助酸的可扩展固态聚合。由此产生的纳米读产品装饰有高密度的吊坠基团,为后合成后处理和功能应用提供了新的机会。的过渡金属配位被证明了功能化的线程,代表了纳米读作为独立合成子的利用的概念证明,以及新颖的,扩展的扩展多维网络的可能性。虽然基于溶液的化学合成是可推广的,但由于诸如几何/空间约束和多个能量竞争的途径之类的局限性,固态的受控有机反应在固态中具有挑战性。11-16碳纳米读是一类新型的晶体,在高压下形成的一维SP 3碳纳米材料。1-9然而,具有与传统方法相当的固态中有机反应的一般合成控制将使一系列新的化学物种和合成子具有挑战性或无法获得基于溶液的化学作用。10高压合成代表了控制固态有机转化的一种新兴方法,该方法使新反应能够产生新的结构基序和新型的键合环境(例如,SP 3 3碳富含碳富含碳的结构)。由于通过缓慢的各向异性压缩苯的初始形成,因此已经开发了几种合成策略,以限制潜在反应途径的数量,并通过选择性环加成促进化学均匀产物的形成。18-24,由于纳米读的骨架仅在一个方向上延伸,因此这些超薄碳材料被预测可以将钻石的最高物理特性与传统聚合物的灵活性结合在一起。25-30可以通过仔细选择小分子前体(例如,苯,17,31吡啶,32吡啶嗪23)来精确控制纳米读的化学成分,从而使它们比可比的纳米材料(例如,纳米管)具有潜在的优势。因此,纳米读的可能应用是多种多样的,包括新颖的储能和先进的结构材料。26,33,34然而,含有均匀吊坠官能团的有序纳米读的形成仍然是一个重大挑战。在纳米读形成条件下,吊坠基团容易产生侧面反应,可以产生各种粘结基序。这种副反应会导致化学不均匀的材料形成,从而导致远距离顺序和精确的化学功能丧失。19,35一种可靠的合成纳米读的方法
sec。2。甲基嗪检测和分析。(a)d efinitions。在本节中:(1)d Irctor。(2)f Ederal实验室。—“联邦实验室”一词具有1980年《史蒂文森 - 威德勒技术创新法》第4节中给出的含义(15 U.S.C.3703)。(3)i n n anstouttuts。““研究所”一词是指国家标准技术研究所。(4)委员会的高等教育。—“高等教育机构”一词具有1965年《高等教育法》第101条的含义(19 U.S.C.1001)。(5)n个开发组织。““非营利组织”一词是指1986年内部税收守则第501(c)(3)条所述的组织,并根据此类守则第501(a)条免税。(6)X Ylazine 。—“甲基嗪”一词是指在兽医医学中经常用作催眠和镇静剂,具有镇痛和肌肉松弛的特性。(b)有能量。-董事应 - (1)支持壁内基本测量科学和研究所的进步 - (a)识别,理解,分歧和分类含有木马,新型合成阿片类药物或其他新的精神活性子站点的分析方法; (b)缩短分析时间表的测量技术并增强麻醉和阿片类药物检测和分析能力; (c)新的数据工具,技术和流程,以识别和公开披露有关
有机化学是一个重要的研究领域,它涵盖了各种反应,合成和有机化合物的分析。这些化合物由碳和氢原子组成,在日常生活中有许多应用,包括工业,农业以及酶或蜡等天然物质。该学科解决了基本原理,包括对有机物质的合成和分析。该领域的范围很大,涵盖了从化学产品到各种天然物质的所有类型的有机化合物。有机化学具有丰富的历史,可以追溯到1828年,当时弗里德里希·沃勒(Friedrich Wohler)通过反应成功合成尿素,证明可以从更简单的物质中产生化合物。这一发现导致了1901年至1931年之间有机化学研究的诺贝尔奖。对碳基分子的研究至关重要,因为这些物质构成了我们每天与我们每天相互作用的所有生物体和许多非生物材料的基础。有机化学家在医学中起着至关重要的作用,创造了对各种药物必不可少的化合物。他们还开发了新型塑料,溶剂和服装染料等产品。有机化学的范围很广,涵盖了多个学科,包括药房,生物化学,材料科学,冶金等等。此外,对有机化学概念的理解在解决诸如污染控制和全球变暖等问题方面变得越来越重要。各个领域的有机化学家的贡献是显着的。复杂分子的合成方法的最新进展显着影响了科学研究的各个领域,强调了有机化学在研究中及其在现实世界中的应用中的重要性。他们的工作导致了医疗保健,农业等方面的突破。例如,在医学领域,他们开发了有针对性的癌症治疗方法,其副作用较少。有机化学家还通过使用自然过程而不是可能损害环境的合成化学物质来增加全球农作物的产量,从而发挥着至关重要的作用。此外,他们还参与生产可生物降解的塑料,该塑料为传统石化基材料提供了环保替代品。这些可生物降解的塑料使用较少的能量,可以通过微生物迅速堆肥或分解。在药房中,有机化学为新药候选者提供较少的副作用,有助于减少对麻醉止痛药的依赖,同时减轻慢性病等慢性病或癌症。有机化学涉及各种反应,包括合成,分解和单个位移。有机化学反应涉及复杂的过程,其中不同的元素相互相互作用。I型和II反应具有不同的特征,由于催化剂的存在,前者不需要氧气,而后者则需要氧气。此外,还有各种类型的水解反应,例如水合和分解,可以归类为替代,分解和消除反应。虽然不可能列出由于无限可能性引起的所有可能反应,但我们提供了下面的一些例子: *均匀反应:当分子分解并形成新的反应时发生 * hydronium离子交换反应:在分子之间转移蛋白质时形成了proton时形成的水解反应 *当水反应之间发生:当水反应时发生:当水反应时发生触发时(氧化物或氧化物),或者氧化氧化物或氧化物的反应时)(氧化物),氧化物或氢氧化物(氧化物)时)获得的电子,具有两个亚型:单电子还原(I型)和双电子还原(II型)这些反应对于理解化学动力学至关重要。单位位移反应通常涉及芳香族化合物上的亲核位移,并且可以通过背面或前侧攻击发生。α氢消除反应在从α碳原子的水中从有机分子中去除氢原子时,就会发生α氢反应,而在诱导电子吸引电子绘制的位点上,β消除是通过前侧攻击发生的。 卤化反应涉及用另一种代替卤离子,可以分解为单个位移和替代反应。 有机化学通过各种应用(例如制造塑料,肥料,某些药物和帮助癌症治疗)在日常生活中起着重要作用。 它也用于通过破裂石油生产车辆和其他机械的燃料。 此外,我们周围都存在有机化合物,因此必须了解它们的特性至关重要,因此我们可以负责任地利用它们来创造一个更舒适的世界。α氢反应,而在诱导电子吸引电子绘制的位点上,β消除是通过前侧攻击发生的。卤化反应涉及用另一种代替卤离子,可以分解为单个位移和替代反应。有机化学通过各种应用(例如制造塑料,肥料,某些药物和帮助癌症治疗)在日常生活中起着重要作用。它也用于通过破裂石油生产车辆和其他机械的燃料。此外,我们周围都存在有机化合物,因此必须了解它们的特性至关重要,因此我们可以负责任地利用它们来创造一个更舒适的世界。有机化学是现代生活的骨干,影响了从粮食生产到医学开发的一切。必须掌握有机分子如何相互作用,以对自己的健康和亲人做出明智的决定。加入我们的旅程,探讨该领域在塑造过去和未来的世界上的重要贡献。一些关键概念包括: - 脂肪含量的烃,其定义,类型和示例 - 命名法,其重要性和命名系统 - 元指导组和Ortho para指导群体 - 核寄生者和亲电的群体 - 介绍,示例,示例和应用程序中的其他关键主题包括有机化的化学反应 - 副派系,构成了核定的核定反应,苯的反应 - 甲苯和苯的硝化 - 苯的卤化,其激活和机制 - 弗里德尔 - 克制酰化和烷基化,它们的机制和实例 - 苯的磺化 - 基于其结构和属性的苯,其定义,机制,机制,机制,机制和解决的有机化合物。它们源自煤炭,植物,动物,天然气和其他来源。有机化学在我们的日常生活中起着重要作用,影响了我们吃的食物,我们穿的衣服,服用的药物以及我们在家中使用的物品。有机化学的影响最直接在我们消耗的食物中。蛋白质,脂肪和碳水化合物都由提供能量和养分的有机化合物组成。塑料来自合成聚合物,而木材主要由纤维素组成。大米,小麦和土豆等食物主要由淀粉组成,人体将其转化为葡萄糖以获得能量。在鱼,肉,鸡蛋和豆类中发现的蛋白质对于建造和修复组织以及代谢至关重要。理解这些概念对于欣赏有机化学在我们日常生活中的作用及其对现代社会的意义至关重要。有机化合物在我们的日常生活中起着至关重要的作用,从营养和食物保存到衣服和建筑材料。这些化合物由甘油和脂肪酸组成,这些甘油和脂肪酸有助于保持身体的温暖并储存能量。除了营养重要性外,有机化合物还用作农药和除草剂来保护作物。食品防腐剂(如苯甲酸钠)可以防止微生物生长,而食用颜色和人造甜味剂可以增强风味和外观。天然纤维(如棉,羊毛和丝绸)由有机化合物组成,包括纤维素和蛋白质。纤维素是在植物细胞壁中发现的多糖,使这些纤维具有独特的特性。尼龙,聚酯和丙烯酸等合成纤维也由有机化合物制成,提供耐用性和多功能性。在纺织工业中,合成纤维由于其寿命长和对收缩的抵抗而受欢迎。在构造中,使用木材,塑料和油漆等有机化合物来建造和装饰房屋。医学也从有机化学中受益匪浅,使用有机化合物开发了许多挽救生命的药物。抗生素(如阿莫西林和青霉素)已彻底改变了细菌感染的治疗。抗癌药,溃疡药,心脏药物,抗抑郁药和维生素都是改善人类健康的有机分子的例子。控制体内各种生物学过程的维生素和激素也是有机化合物。维生素C对于组织愈合和酶功能至关重要,而胰岛素则调节血糖水平。有机化学对教育产生了重大影响,纤维素被用于生产纸张。有机化合物在我们的日常生活中起着至关重要的作用,从教育到个人护理产品,甚至是洗涤剂等家居用品。通过有机化学创建的这些化合物构成了许多日常物体的基础。例如,肥皂是通过用坚固的碱化油和脂肪制成的,而香水却依靠酯和醇来散发出不同的气味。此外,聚合物,PVC,三聚氰胺和Teflon之类的聚合物由于其独特的特性而被广泛使用,例如灵活性和对化学物质和热量的耐药性。由于这些化合物被编织成现代生活的各个方面,因此它们强调了有机化学在塑造我们世界中的重要性。通过探索有机化合物的应用,我们可以深入了解化学对我们日常生活的变革力量及其推动未来科学突破的潜力。
战略性公路网络。到 2010-11 年,10 个最大的城市地区将达到其当地交通规划中设定的有关通过主干道进入市中心的交通拥堵目标。到 2006 年将铁路服务的准时性和可靠性提高到至少 85%,到 2008 年进一步提高。到 2010 年,与 2000 年的水平相比,英格兰的公共交通(公共汽车和轻轨)使用率增加 12% 以上,每个地区都有所增长。到 2010 年,与 1994-98 年的平均水平相比,将道路交通事故中死亡或重伤的人数减少 40%,将儿童死亡或重伤人数减少 50%,并显著解决弱势群体中较高的交通事故发生率。改善空气质量,满足空气质量战略中关于一氧化碳、铅、二氧化氮颗粒、二氧化硫、苯和 1,3 丁二烯的目标(与环境、食品和乡村事务部共同制定的目标)。根据京都议定书的承诺,将温室气体排放量减少到 1990 年水平以下 12.5%,并通过包括能源效率和更新在内的措施,努力在 2010 年前将二氧化碳排放量减少到 1990 年水平以下 20%(与环境、食品和乡村事务部和贸易工业部共同制定的目标)。按 PSA 目标细分的财务信息 应用程序
主要产品:涂料添加剂:Texanol™、Optifilm™、酮、酯、乙二醇醚、醇溶剂、EastaPure™、纤维素、聚酯、聚烯烃基聚合物、Tetrashield™保护树脂体系|护理添加剂:烷基胺衍生物、有机酸及衍生物、纤维素生物聚合物、Adjust™ SL|特种液体:Eastman Therminol™传热流体、Skydrol™、涡轮机油、SkyKleen™、Marlotherm™|动物营养:有机酸及衍生物、氯化胆碱主要市场和应用:交通运输:OEM和修补涂料中使用的聚合物和溶剂、航空液体|耗材:图形艺术和油墨中使用的涂料添加剂和聚合物|建筑和施工:建筑涂料中使用的溶剂|食品、饲料和农业:作物保护、肠道健康解决方案|工业化学品:用于化学过程和可再生能源的传热流体 水处理和能源:用于水处理的烷基胺衍生物 耐用品和电子产品:用于涂料、木材和工业应用的聚合物和溶剂 | 医疗和制药:用于药物的胺基中间体 | 个人护理和健康:用于个人和家庭护理产品的肥皂、化妆品和洗涤剂的胺基中间体 主要原材料:醇、烷基胺、苯、CS2 苛性钠、环氧乙烷、甲酸、液化天然气、新多元醇酯、磷、丙烷、丙烯、木浆 主要竞争对手:涂料添加剂:巴斯夫欧洲公司、陶氏公司、Oxea、塞拉尼斯公司 | 护理添加剂:巴斯夫欧洲公司、陶氏公司、亨斯迈公司、科迪华公司、Agro-Kanesho Co. Ltd.、拜耳 | 特种液体:陶氏公司、埃克森美孚公司动物营养:巴斯夫公司、柏斯托控股公司、鲁西化工集团、巴尔赫姆公司、安迪苏
3Rs 减少、再利用、回收 ACM 含石棉材料 AD 厌氧消化 ADB 亚洲开发银行 ASU 空气分离装置 BOOT 建造、拥有、运营、转让 BTEX 苯、甲苯、乙苯和二甲苯 C 碳 CH 4 甲烷 CHP 热电联产 CO 2 二氧化碳 COD 化学需氧量 CSTR 连续搅拌釜式反应器 DBOO 设计-建造-拥有-运营 DME 二甲醚 EEZ 专属经济区 EfW 废物能源 EIA 环境影响评估 EOLT 报废轮胎 FOG 脂肪、油和油脂 FSM 密克罗尼西亚联邦 GHG 温室气体 H 2 氢气 H 2 S 硫化氢 HCFC 氢氯氟烃 HRT 水力停留时间 JPRISM II 日本固体废物管理区域倡议促进技术合作项目第二阶段 MAP 微波辅助热解MEA 多边环境协定 MoU 谅解备忘录 MSW 城市固体废物 N 氮 NOx 氮氧化物 OEM 原始设备制造商 OLR 有机负荷率 PE 聚乙烯 PET 聚对苯二甲酸乙二醇酯 PESTLE 政治、环境、社会、技术、法律和经济 PIC 太平洋岛国 PNG 巴布亚新几内亚 POLP 太平洋垃圾项目 POPs 持久性有机污染物 PPE 个人防护设备 ppm 百万分率 PPP 公私合作伙伴关系 PRIF 太平洋地区基础设施设施 RDF 垃圾衍生燃料 RE 可再生能源 RMI 马绍尔群岛共和国 RNG 可再生天然气
首次使用可聚合表面活性剂的伽马辐射引起的微乳液聚合剂制备了含有抗菌和紫外线激活涂层的相变材料的多功能纳米胶囊。首先,可聚合的表面活性剂,聚(2-甲基丙烯酰氧基十二烷基二甲基二甲基氯化铵-4-甲基丙烯酰氧基苯甲酮) - 甲基丙烯酸二甲基丙烯酸甲酯 - 二甲基二二酯 - 二氧化物 - 二(QAC 12 -BP) - be-bp-bpmma-iium ang bimma and Qualthary Ammon Ammon Ammon andon Ammon Nary Ammon,溶液碘转移聚合(溶液ITP)。之后,使用p(qac 12 -bp)-b-pmma-i As Polymeriz surfactants surfactantants制备了γ辐射引入的甲基甲基丙烯酸甲酯(MMA)(MMA)(MMA)和二氨基苯(DVB)(DVB)(DVB)的微型乳化聚合。加入从格拉姆辐射引发的连续水相中的羟基自由基,并用单体添加并逐渐成长为表面活性或z-商,它进入了由p(qac 12 -bp)-b -pmma-i链稳定的单体液体。在表面上获得了最终的P(MMA-DVB)/OD纳米胶囊,锚定P(QAC 12 -BP)-B -PMMA-I链在表面上获得。仅在1.5小时内,聚合顺利进行,并达到高转化率(≥90%)。获得的乳液具有高胶体稳定性而无需凝结。聚合物纳米胶囊是球形的,大小约为180 nm,高电荷(> +70 mV)。由于含有QAC 12和BP段的粒子表面,可以将基于BP组的UV激活的共价键覆盖在织物上,而它们由于呈现QAC 12而具有很高的抗细菌活性潜力。获得的聚合物乳液可用作具有抗菌特性的基于喷雾的热储存涂层。
磺胺类药物的开发早在 1908 年就开始了 [ 1 ],当时“Prontosil”(4-(2,4-二氨基苯基)二嗪基)-苯磺酰胺 [ 2 ] 的抗菌作用首次被成功用于治疗人类细菌性脓毒症 [ 3 ]。尽管今天,由于其他类别药物的发展,磺胺类药物或多或少已失去了其作为抗菌药物的重要性,但随着人们观察到此类药物的代表是碳酸酐酶的良好抑制剂 [ 4 ],一个新时代开始了。碳酸酐酶 (CAs; EC 4.2.1.1) 对生命至关重要,因为它们通过将二氧化碳和水转化为碳酸氢盐和质子来平衡组织和血液中的酸碱平衡。 CA 的重要性可从其高周转率 [ 5 ] 看出,其周转率甚至比乙酰胆碱酯酶 (AChE) 还要快,乙酰胆碱酯酶是突触传递所必需的,因此属于最快的催化酶。此外,已证明其同工型碳酸酐酶 IX 在许多类型的癌症中过度表达,从而导致周围组织酸中毒,从而促进肿瘤生长、侵袭和增殖 [ 6 ]。此外,缺氧引起的肿瘤微环境变化会促进侵袭性和耐药性癌症表型 [ 7 ],从而导致癌症患者预后不良 [ 8 ]。尤其是近年来,碳酸酐酶抑制剂 (CAI) 的开发引起了广泛关注 [ 9 , 10 ],因为 CAI 可能有助于抗癌治疗 [ 11 ]。尤其是针对 hCA IX 和 XII 似乎具有重大意义,因为这些酶在包括乳腺癌、宫颈癌和肺癌在内的缺氧肿瘤中过度表达 [ 12 - 17 ]。这些金属酶在许多生理和病理过程中发挥作用。十五种人类 CA 亚型中的两种,即 hCA IX 和 XII,由于 HIF-1/2(转录因子
