通过故意自然病毒暴露NIR EYAL 1和MARC LIPSITCH 2 1人口水平生物伦理学中心和Rutgers University,New Brunswick,NEW NJ,美国新泽西州,测试SARS-COV-2疫苗疗效。卫生行为,社会和政策部,罗格斯公共卫生学院,美国新泽西州皮斯卡塔维。2流行病学系传染病动态中心和免疫学和传染病系,哈佛大学T. H. Chan公共卫生学院,美国马萨诸塞州波士顿,美国马萨诸塞州。跑步头:自然挑战的冠状病毒疫苗测试,提及以前提出的任何会议:无。*通讯作者联系信息:尼尔·艾尔(Nir Eyal),ifh rm。400,112 Paterson St.,New Brunswick NJ 08901,美国。 nir.eyal@rutgers.edu。 摘要:具有标准挑战设计的疫苗试验可以比标准阶段III启动后更快,但是在实验室中,它需要在某种程度上进行漫长的过程才能在某种程度上发展和标准化挑战病毒。 这有些损害了其对SARS-COV-2候选疫苗疗效的加速疗效测试的总体承诺,以及发展中国家和小公司进行该疫苗的能力。 我们描述了一种挑战设计,该设计避免了漫长的过程的这一部分。 与标准挑战设计和标准III期设计相比,新设计具有额外的道德,科学和可行性优势,应考虑未来的疫苗试验。 单词:4,180(摘要:107)参考:31表:2张照片:1400,112 Paterson St.,New Brunswick NJ 08901,美国。nir.eyal@rutgers.edu。摘要:具有标准挑战设计的疫苗试验可以比标准阶段III启动后更快,但是在实验室中,它需要在某种程度上进行漫长的过程才能在某种程度上发展和标准化挑战病毒。这有些损害了其对SARS-COV-2候选疫苗疗效的加速疗效测试的总体承诺,以及发展中国家和小公司进行该疫苗的能力。我们描述了一种挑战设计,该设计避免了漫长的过程的这一部分。与标准挑战设计和标准III期设计相比,新设计具有额外的道德,科学和可行性优势,应考虑未来的疫苗试验。单词:4,180(摘要:107)参考:31表:2张照片:1
大脑计算机界面(BCIS)是传统上用于医学的系统,旨在与大脑相互作用以记录或刺激神经元。尽管有好处,但文献表明,专注于神经刺激的侵入性BCI当前的脆弱性使攻击者能够控制。在这种情况下,神经网络攻击成为能够通过进行神经过度刺激或抑制来破坏自发神经活动的威胁。先前的工作在小型模拟中验证了这些攻击,其神经元数量减少,缺乏现实世界中的复杂性。Thus, this work tackles this limitation by analyzing the impact of two existing neural attacks, Neuronal Flooding (FLO) and Neuronal Jamming (JAM), on a complex neuronal topology of the primary visual cortex of mice consisting of approximately 230,000 neurons, tested on three realistic visual stimuli: flash e ff ect, movie, and drifting gratings.在每个刺激的三个相关事件中评估了每次攻击,还测试了攻击25%和50%神经元的影响。根据尖峰和偏移百分比的数量,结果表明,攻击对电影产生了最大的影响,而黑暗和固定事件是最强大的。尽管两种攻击都可以显着发作神经活动,但果酱通常更具破坏性,产生更长的时间延迟,并且患病率更高。最后,果酱不需要改变许多神经元以显着发神经活动,而FLO的影响随着攻击的神经元数量而增加。
小麦是自然自花授粉的,但在实验条件下可以与各种野生草类杂交。该申请讨论了与试验地点存在的野生近缘种的性兼容性。Elymus repens(普通草)是四个试验地点中唯一常见的野生近缘种,Elymus caninus(有须草)也出现在两个试验地点。ACRE 建议,在较大的转基因试验地点及其周围,通过人工拔除、机械方法(耙地)或施用草甘膦除草剂来控制普通草、有须草、其他草类和杂草。除了在单独的转基因释放下进行试验的谷物或草类之外,不允许在试验区 20 米范围内生长任何谷物或草类。值得注意的是,申请人报告称,未发现小麦 x 披碱草之间的自然杂交种。
根据侵入性,BCI 主要分为两类。非侵入式 BCI 无需手术即可从外部刺激大脑。尽管某些技术可以针对大脑的较小区域,但非侵入式 BCI 可以覆盖大脑的较大区域。相比之下,侵入式系统可以应用于小区域,甚至具有单神经元分辨率,但会带来更高的生理风险(Ramadan 和 Vasilakos,2017 年)。基于 BCI 的相关性和扩展性,近年来出现了新的技术和公司,专注于开发新的侵入式系统,以神经元粒度刺激大脑。Neuralink 就是一个例子(Musk 和 Neuralink,2019 年),这家公司设计了颠覆性的 BCI 系统来记录神经元级别的数据,目前正致力于覆盖刺激功能。此外,神经尘埃(Seo 等人,2013)是一种由数百万个位于大脑皮层中的纳米级可植入设备组成的架构,可以进行神经记录。神经尘埃的演变是无线光遗传学纳米网络设备 (WiOptND)(Wirdatmadja 等人,2017),它使用光遗传学来刺激神经元。尽管这些方法很有前景,但 Bernal 等人 (2020) 的作者表明,它们存在漏洞,可能允许攻击者控制两个系统并执行恶意刺激动作,从而改变自发的神经元信号。根据攻击的覆盖范围(就大脑区域和受影响的神经元数量而言),网络攻击者可能会造成永久性脑损伤,甚至导致患者死亡。在同一方向上,Bernal 等人 (2021) 发现 BCI 的网络安全领域还不够成熟,非复杂的攻击可能会造成重大损害。总之,攻击者可以利用 BCI 漏洞来利用这些有前途的神经刺激技术。以这些研究的发现为动机,本文重点关注针对旨在改变神经元行为的网络攻击的稀缺研究。此外,还需要新的方法来衡量和理解这些攻击的影响。特别是,这些问题具有特殊的意义,因为攻击可能会恶化或重现常见神经退行性疾病的影响(Bernal 等人,2021 年)。为了改进以前的挑战,这项工作的主要贡献是定义和实施一种新的神经元网络攻击,即神经元干扰网络攻击 (JAM),重点关注神经活动的抑制。本研究旨在探索抑制性神经元网络攻击对大脑的影响。然而,文献中缺乏全面的神经元拓扑结构,因此,我们模拟了小鼠视觉皮层的一部分,放置在大脑的枕叶区域,定义了小鼠试图离开特定迷宫的用例。神经元拓扑是使用经过训练以解决此特定用例的卷积神经网络 (CNN)(Géron,2019)构建的。这项工作的第二个贡献是评估了 JAM 网络攻击对特定场景中的神经元和人工模拟造成的影响。为了进行分析,我们使用了现有指标,但也定义了一组新指标,得出结论:JAM 网络攻击可以改变自发的神经元行为,并迫使小鼠做出不稳定的决定以逃离迷宫。
本研究探讨了信息和通信技术(ICT)对当代民主的深刻影响。专注于2020年美国总统大选,这项研究调查了Twitter/X如何以特定的社交模式和构建真相的方式结构在线社区。这些平台的兴起引发了辩论,即它们是在增强还是破坏民主进程的结论。这项研究并没有继续进行这项尚未解决的讨论,而是将询问ICT的重点移动到ICT如何影响民主中的主体的存在。这意味着要从仅通过其实用性定义ICT作为一种影响行为的独立技术,以查看ICT创建的虚拟世界中的受试者是如何纠缠的。从方法论上讲,用户在网络上的实践使用计算科学指标映射。这项研究采用Twitter的流API来组装包含关键字的推文的数据集。使用Python编程语言执行了描述性分析。在进行情感分析中,这项研究采用了Twitter-Roberta-base模型。为了对大型交互数据集进行全面分析,我们提出了一种新型方法,利用大型语言模型来自动化分类过程。该分析揭示了算法驱动的虚拟互动如何创建“混合现实”,在这种情况下,虚拟和现实世界的动态相交,从而导致两极分化和民主审议的侵蚀。特朗普的失败标志着在阴谋理论的旗帜下走上街头的用户之间的碰撞,这是通过接受作为实践的替代性虚拟真理的吸引力,而公民则利用对选举过程的经验结果进行审议的公民。这项研究不仅提供了有关ICT对民主影响的经验证据,而且还引入了用于分析大型社交媒体数据的创新计算技术。
在日益数字化和互联互通的欧洲,欧盟从各个方面努力提升网络弹性,保护其公民和企业免受网络威胁。该行动计划应对了形势的紧迫性和该行业面临的独特威胁。它以现有的网络安全立法框架为基础。根据 NIS2 指令,医院和其他医疗保健提供者被确立为高关键性行业。NIS2 网络安全框架与《网络弹性法案》相辅相成,《网络弹性法案》是欧盟第一部对包含数字元素的产品提出强制性网络安全要求的立法,于 2024 年 12 月 10 日生效。委员会还根据《网络团结法》建立了网络应急机制,该机制加强了欧盟的团结和协调行动,以发现、准备并有效应对日益增长的网络安全威胁和事件。
五角大楼的黑名单上还包括中国最大的船舶制造商中国船舶工业集团公司(CSSC)和中国最大的海上勘探公司中国海洋石油总公司(CNOOC)。被五角大楼视为军事实体的其他航运相关公司包括世界最大集装箱制造商中国国际海运集装箱集团公司(CIMC)、全球主要港口建设公司中国交通建设集团以及中国最大船东之一中国外运长航集团。
在电子医疗领域,保护患者远程监护系统至关重要,以确保患者遵循临床路径,不受任何外部入侵。特别是人工智能 (AI) 和机器学习 (ML) 已成为信息安全的关键技术,因为它们能够快速分析数百万个事件并识别许多不同类型的威胁。入侵分析人员利用先前知识发现与事件相关的事件并了解其发生的原因,从而推断安全漏洞的背景 [1]。尽管已经开发出提供可视化技术并最大限度地减少人机交互以简化分析过程的安全工具,但人们对人性化解释安全事件的关注却太少。仅仅报告网络攻击不足以让医疗保健机构
1。新的靶向治疗方法有效地杀死没有副作用的癌细胞(例如,使用肿瘤微环境(例如缺氧,酸性pH)或使用肿瘤特异性表面分子或免疫疗法,例如CAR T细胞,新抗原基于新抗原的治疗治疗疫苗(例如,使用肿瘤微环境识别新的靶标 / /))。