摘要为了区分有害,共生和有益微生物,植物依赖于多糖,例如B-葡萄糖,它们是微生物和植物细胞壁的组成部分。将与细胞壁相关的B-葡聚糖聚合物转化为特定结果,该结果影响植物 - 微生物相互作用是由水解和非溶解度B-葡聚糖结合蛋白介导的。这些蛋白质在微生物定殖过程中起着至关重要的作用:它们会影响宿主和微生物细胞壁的组成和弹性,调节B-葡萄糖寡聚体的倍形浓度的稳态,并介导B -glucan的感知和信号传导。本综述概述了B-葡聚糖及其结合蛋白在植物免疫和共生中的双重作用,强调了最新发现,关于B-葡聚糖结合蛋白的作用,是免疫的模量,以及与伴有的共生受体有关的,涉及微生物良好调节的良好调查。
注意:对于临床,认知和行为测试,括号中显示了最佳分数。贝叶斯方差分析用于检查群体差异,其中有证据表明组之间有差异(> 3)事后结果显示BVFTD与PSP。贝叶斯因素的常规阈值代表了有利于假设的证据(> 3),强(> 10)和非常强的(> 30)。bf <1被认为是无效假设的证据。缩写:ACE-R,修订了Addenbrooke的认知检查; BVFTD,行为变化的额颞痴呆; CBI-R,修订后的剑桥行为清单; F,女;晶圆厂,额叶评估电池; M,男性; MMSE,小型国会考试; PSP,进行性核上麻痹; TGB,甲状腺素结合球蛋白; WM,工作记忆。
。CC-BY-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 8 月 15 日发布。;https://doi.org/10.1101/2022.08.11.503584 doi:bioRxiv 预印本
淀粉样蛋白β沉积是散发性阿尔茨海默氏病和常染色体主导的阿尔茨海默氏病的标志性病变之一,后者是由淀粉样蛋白β处理中涉及的基因突变引起的。尽管淀粉样蛋白β沉积是散发性阿尔茨海默氏病和常染色体主导的阿尔茨海默氏病的核心,但这些阿尔茨海默氏病亚型的某些差异在与淀粉样ambeta的空间模式方面存在观察到。Previous work has shown that the spatial pattern of amyloid-beta in individuals spanning the sporadic Alzheimer ' s disease spectrum can be reproduced with high ac- curacy using an epidemic spreading model which simulates the diffusion of amyloid-beta across neuronal connections and is constrained by individual rates of amyloid-beta production and clearance.然而,尚未研究是否可以以相同的方式对稀有的常染色体式阿尔茨海默氏病中的淀粉样蛋白-Beta沉积进行建模,如果是这样,如果是这样,淀粉样蛋白贝塔(Alzheimer)的淀粉样蛋白β的传播模式多么一致。我们利用流行病扩散模型作为数据驱动的方法,用于探测淀粉样蛋白β的传播模式在三个不同的大型成像数据集中的淀粉样蛋白β传播模式(2种散发性阿尔茨海默氏病,1个常染色体典型的阿尔茨海默氏病)。我们分别评估了每个数据集中的个体和个体内模型性能,并进一步识别了淀粉样蛋白β扩散的最可能受试者特异性的表述。我们将流行病扩散模型分别应用于阿尔茨海默氏病神经影像学计划(n = 737),开放式成像研究系列(n = 510)和主要遗传的阿尔茨海默氏症网络(n = 249),其中后两个使用相同的管道处理。使用在零星阿尔茨海默氏病的先前作品中定义的epcentres,流行病扩散模型对所有三个数据集中的淀粉样蛋白β沉积的区域模式进行了适度的预测。我们进一步发现,虽然大多数淀粉样蛋白β的最有可能的中心 - 积极对象与默认模式网络重叠,但常染色体占主导地位的13%
压力是每个人日常生活中都会用到的一个词,因为它不可避免地会时有发生。现代生活充满了挑战,人类被忙碌的工作日程和最后期限、人际关系困难、家庭事务和财务问题等压力环境所包围。在马来西亚,2017 年进行的国家健康和发病率调查 (NHMS) 报告称,在 13 至 17 岁的青少年中,五分之一患有抑郁症,五分之二患有焦虑症,十分之一患有压力 [1]。由于所有人都同样面临压力,因此检测和监测压力水平以便尽早诊断,预防可能的未来疾病至关重要。压力反应源自大脑,但涉及各种生化和生理效应。压力会激活称为下丘脑-垂体-肾上腺 (HPA) 轴的主要激素反应,最终增加肾上腺皮质的皮质醇分泌 [2]。皮质醇水平升高表明压力水平增加。
在帕金森病 (PD) 中,病理性高水平的 β 活动 (12-30 Hz) 反映了特定的症状,并通过药物或手术干预恢复正常。尽管接受深部脑刺激 (DBS) 的 PD 患者丘脑底核 (STN) 中的 β 特征现已转化为自适应 DBS 系统,但只有有限数量的研究表征了苍白球内部 (GPi) 中的 β 功率,而苍白球内部是同样有效的 DBS 目标。我们的目标是比较接受 DBS 的 PD 患者在休息和运动时 STN 和 GPi 中的 β 功率。37 名人类女性和男性参与者完成了一项简单的行为实验,包括休息和按下按钮的时间,从而从 19 个(15 名参与者)STN 和 26 个(22 名参与者)GPi 核中记录局部场电位。我们检查了整体 beta 功率以及 beta 时域动态(即 beta 爆发)。我们发现 GPi 在静息和运动期间的 beta 功率更高,运动期间 beta 失同步也更多。beta 功率与运动迟缓和僵硬严重程度呈正相关;然而,这些临床关联仅存在于 GPi 队列中。关于 beta 动态,GPi 和 STN 中的爆发持续时间和频率相似,但 GPi 爆发更强且与运动迟缓-僵硬严重程度相关。因此,不同基底神经节核的 beta 动态不同。相对于 STN,GPi 中的 beta 功率可能更容易被检测到,随着运动而发生更多调节,并且与临床损伤更相关。总之,这可能表明 GPi 是基于 beta 的自适应 DBS 的潜在有效目标。
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
Beta活动被认为在感觉运动过程中起关键作用。然而,对于该频带中的活动如何发展知之甚少。在这里,我们研究了从婴儿期到成年期的感觉运动β活性的发育轨迹。,我们从9个月大,12个月大的成年人(男性和女性)中记录了脑电图,同时他们观察并执行了抓握运动。我们使用一种结合时间频分解和主成分分析的新方法分析了“β爆发”活性。然后,我们检查了沿所选主组件的突发速率和波形基序的变化。我们的结果揭示了在跨部门执行过程中β活动的系统变化。我们发现,在所有年龄段的运动执行过程中,β爆发率下降,成年人观察到最大的下降。此外,我们确定了三个主要组件,这些组件定义了在整个试验过程中系统地改变的波形图案。我们发现,波形形状更接近中间波形的爆发不是速率调节的,而波形形状远离中位数的爆发则差异速率调节。有趣的是,某些爆发基序的速率降低发生在运动过程中早期发生,并且在成年人中比婴儿更偏侧,这表明特定类型的β爆发的速率调节速度随着年龄的增长而变得越来越完善。
OITA大学和日本的Eisai Co.宣布开发机器学习模型,以预测淀粉样蛋白β(A?)在大脑中积累,结合了背景数据,例如年龄,性别,吸烟史和病史,以及一般血液测试和小型精神状态检查(MMSE)项目。该模型有望使初级保健医师预测大脑A的积累?,在常规体检期间,哪个是阿尔茨海默氏病(AD)的重要病理因素,并促进AD的简单早期筛查。