许多研究表明,疫苗不是完全有效的,这意味着接种疫苗的人群都包括疫苗免疫的人,尽管接受了疫苗接种疫苗,但疫苗的疫苗也没有。这可能是可能的,因为某些接种疫苗的人可能会错误地认为自己受到了完全保护并且无法获得该疾病。这种看法会显着影响行为,导致一些接种疫苗的人在遵循预防或缓解措施方面的勤奋程度较小。是由上述动机的,我们研究了不产生免疫力的接种疫苗人员的行为变化如何影响直接传播疾病的动力学以及关键指标,例如基本的生殖数和疫苗有效性。我们提出了一个模型,该模型考虑了具有三个失败方面的疫苗:“取”,“学位”和“持续时间”。此外,非免疫接种个体的行为变化是通过一个参数建模的,该参数基于遵守缓解措施来调整其接触率。我们的结果使我们能够可视化行为变化在影响疾病传播动态的各种因素中的作用。首先,我们证明了在不完全有效疫苗的模型中存在的向后分叉存在。第二,我们定义了行为指数阈值,该阈值是确定疾病是否由于行为效应而持续存在的关键指标。最后,我们的结果强调了行为指数和感染的初始值
摘要 本文提出了两种新的逻辑函数泛化,分别基于非广义热力学、q-逻辑方程和任意阶逻辑方程。它通过将混沌理论与逻辑方程相结合来展示混沌理论的影响,并揭示了微小的参数变化如何将系统行为从确定性行为转变为非确定性行为。此外,本文还介绍了 BifDraw——一个使用经典逻辑函数及其泛化绘制分岔图的 Python 程序,说明了系统对条件变化的响应的多样性。该研究通过研究其复杂的动力学并提供可能在热力学基本状态和熵方面具有新意义的新泛化,为逻辑方程在混沌理论中的地位提供了关键作用。此外,本文还研究了方程的动力学性质及其中的分岔图,这些图呈现出复杂性和令人惊讶的动态系统特征。BifDraw 工具的开发体现了理论概念的实际应用,有助于进一步探索和理解混沌理论中的逻辑方程。这项研究不仅加深了对逻辑方程和混沌理论的理解,还介绍了可视化和分析其行为的实用工具。
不同1的模拟。5×10 - 4 SV YR - 1套管速率(红色曲线)。这个准平衡带1。5×10 - 4 Sv yr -1是分支
摘要:电子分叉是一种巧妙的生物能量转换机制,可有效耦合三种不同的生理相关底物。因此,执行此功能的酶通常在调节细胞氧化还原代谢中起关键作用。一种这样的酶是 NADH 依赖性还原铁氧还蛋白:NADP + 氧化还原酶 (NfnSL),它将 NAD + 的热力学有利还原耦合以驱动铁氧还蛋白从 NADPH 的不利还原。NfnSL 与其底物的相互作用被限制在严格的化学计量条件下,这可确保非生产性分子内电子转移反应的能量损失最小。然而,决定这一情况的因素尚不清楚。NfnSL 的一个奇怪特征是,分叉电子的两个初始受体都是独特的铁硫 (FeS) 簇,每个簇包含一个非半胱氨酸配体。尽管位点分化的 FeS 配体在许多氧化还原活性酶中都存在,但它们的生化影响和机制作用仍是谜。在此,我们描述了野生型 NfnSL 和变体的生化研究,其中位点分化的配体之一已被半胱氨酸取代。基于染料的稳态动力学实验、底物结合测量、生化活性测定和酶中电子分布评估的结果表明,NfnSL 中的这种位点分化配体在维持两种电子转移途径执行的协调反应的保真度方面发挥作用。鉴于这些辅助因子的共性,我们的发现具有广泛的意义,超越了电子分叉和机械生物化学,并可能为调节细胞氧化还原平衡的方法提供信息,以实现有针对性的代谢工程方法。
时空分数 Fokas-Lenells (STFFL) 方程是电信和传输技术中使用的基本数学模型,阐明了光纤中非线性脉冲传播的复杂动力学。本研究采用 STFFL 方程框架内的 Sardar 子方程 (SSE) 方法探索未知领域,发现大量光孤子解 (OSS) 并对其分叉进行彻底分析。发现的 OSS 涵盖多种类型,包括亮暗孤子、周期孤子、多个亮暗孤子和各种其他类型,形成迷人的光谱。这些解揭示了亮暗孤子之间的复杂相互作用、复杂的周期序列、有节奏的呼吸、多个亮暗孤子的共存,以及扭结、反扭结和暗钟形孤子等有趣现象。这项探索建立在细致的文献综述基础之上,揭示了 STFFL 方程动态框架内以前未被发现的波动模式,大大扩展了理论理解,为创新应用铺平了道路。利用 2D、轮廓和 3D 图,我们说明了分数和时间参数对这些解决方案的影响。此外,全面的 2D、3D、轮廓和分叉分析图仔细研究了 STFFL 方程固有的非线性效应。使用汉密尔顿函数 (HF) 可以进行详细的相平面动力学分析,并辅以使用 Python 和 MAPLE 软件进行的模拟。发现的 OSS 解决方案的实际意义扩展到现实世界的物理事件,强调了 SSE 方案在解决时空非线性分数微分方程 (TSNLFDE) 中的有效性和适用性。因此,必须承认 SSE 技术是一种直接、高效和可靠的数值工具,可在非线性比较中阐明精确的结果。
在这项工作中,我们使用带有X点几何形状的Full-F Gyrokinetic incelter-in-cell代码研究了磁性构件设备边缘的等离子体斑点的动力学。在模拟中,随后遵循种子斑点的演变,它接近分离杆附近的天然形成的层状剪切层,在该斑点稳定下,斑点是由自搭配的绝热电子反应引起的大型自旋稳定的,并且在交叉效率的传播过程中观察到了blob bifurcation和blob bifurcation and Trapping。在构建了区域无区域和区域剪切层中均具有新的理论解释,其中包括主要的E×B旋转运动。是由旋转斑点与纬向剪切层之间相互作用引起的传输屏障的理论条件,并通过模拟对其缩放进行了验证。新的理论框架,尤其是运输障碍,可用于解释和预测各种实验现象。特别是,用实验参数计算出的传输屏障条件表明,在实验中,H模式的斑点径向传输小于L模式。
3.0 'ISPAN' Module Development .............................................................. 15 3.1 Flat Stiffened Panel .......................................................................... 16 3.1.1 DIAL Shell Element .............................................................. 18 3.1.2 Model Geometry .................................................................. 19 3.1.3 Loads .....................................................................................................................................................................................................................................................边界条件................................................................................................................................................................................................................................................................... 21 3.1.5解决方案............................................................... 3.2.1.1 Example 1 Linear Static Analysis .................................. 26 3.2.1.2 Example 2 Bifurcation Buckling Analysis ........................ 31 3.3 Flat Rectangular Tubular Truss Core Panel ............................................... 35 3.3.1 Program Components ............................................................ 35 3.3.1.1 Command Module ................................................... 35 3.3.1.2前处理器..................................................................................................................................................................................................................................... 3后处理器.............................................................................
通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏))通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏)
通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏))通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏)
大多数颅内动脉瘤(ICA)出现在脑血管树的特定部分上,名为Willis圈(Cow)。尤其是,它们主要出现在构成这种圆形结构的主要动脉分叉上的十个。因此,对于有效而及时的诊断,开发一些能够准确识别每个感兴趣分叉(BOI)的方法至关重要。的确,自动提取出现ICA风险较高的分叉将使神经放射学家快速浏览最令人震惊的地区。由于最近在人工智能上的效果,深度学习是许多模式识别任务的最佳性能技术。此外,各种方法是专门为医学图像分析目的而设计的。这项研究旨在帮助神经放射科医生迅速找到任何出现ICA发生风险的分叉。它可以看作是一种计算机辅助诊断方案,在该方案中,人工智能有助于访问MRI内感兴趣的区域。在这项工作中,我们提出了一种完全自动检测和识别构成威利斯圈子的分叉的方法。已经测试了几个神经网络架构,我们彻底评估了分叉识别率。