Wu,J.,Zhu,X.,Lin,H.,Chen,Z.,Tang,H。,&Wang,Y。(2020)。APP/PS1转基因AD小鼠的胆汁酸轮廓中的性别差异。大脑研究公告,161,116–126。doi:10.1016/j.brainresbull.2020.05.003
肠粘膜免疫系统的基本作用是维持对腔抗原的耐受性,这是通过肠道居住的免疫细胞和由微生物组提供的两向相互作用的大量协调和多层相互作用来实现的。粘膜体液免疫反应(并且主要是分泌IgA)是主机调节分类学组成[1-7]空间组织[8-10]和微生物群的代谢功能[11-13]的主要手段。由共生微生物进行的最重要的母质功能之一是宿主胆汁酸的生物转化(BAS)[14]。BAS是宿主衍生的两亲分子,可作为乳化剂,可促进饮食脂质和脂溶性维生素的溶解和吸收[15]。bas主要使用胆固醇作为前体作为初级碱,然后将其运输并存储在胆囊中,直到后之前将其分泌到十二指肠。大约在分泌到肠道的所有BAS中的95%将在远端回忆[16,17]。在稳态条件下,逃脱这种回收过程的5%的BAS将到达结肠,在那里它们被共生肠道细菌修饰以成为次要BAS。肠道菌群通过不同的酶促反应修饰腔体BA生物化学:deconju-gation,脱氢,脱氢,脱氢,沉积和氧化还原。细菌BA生物转化的第一个限制步骤是甘氨酸或牛磺酸与BAS(deCongugation)的裂解,这是通过细菌胆汁盐羟化酶(BSH)酶进行的。BAS的细菌解偶会阻止BAS通过顶端钠BA转运蛋白(ASBT)的主动转运[18]。人类肠道微生物群的遗传研究表明,所有主要细菌门的成员都具有BSH基因,并且能够进行BA decondongation [19,20]。与脱糖性相反,在企业门的几个含量中(例如,乳酸杆菌科,梭状芽孢杆菌科,乳甲苯性乳甲苯性乳酸菌,浓度)似乎是主要负责的,用于随后的酶促反应[21,22]。此外,肠道菌群可以通过直接影响管腔中共轭BAS的平衡的能力来调节BAS中BAS的合成[23]。疏水性碱基浓度的微摩尔移位可以刺激肠上皮细胞apopto- Sis [24,25],因此BAS的肠肝循环是通过负面反馈机制运行的严格调节过程,该过程通过生理上良性的BA组成和中心含量维持生理上的良性BA组成和中心。最近,BAS被描述为信号分子,它们是核法尼X受体(FXR)和Takeda G蛋白偶联受体(TGR5)的配体[26]。
抽象目标尽管成像和病理评估取得了重大进展,但良性和恶性胆道狭窄之间的早期分化仍然具有挑战性。内窥镜逆行胆管造影术(ERCP)用于研究胆道狭窄,使胆汁的收集。我们测试了下一代测序(NGS)突变无细胞DNA(CFDNA)的诊断潜力。设计了一组可疑胆汁狭窄的患者(n = 68)的前瞻性队列。使用对临床实验室实施开放的NGS面板,将初始病理诊断的性能与在第一次ERCP时收集的胆汁CFDNA的突变分析(oncomine pan-Cancancer无细胞的无细胞测定法)进行了比较。导致初始病理诊断将这些狭窄分类为良性(n = 26),不确定(n = 9)或恶性(n = 33)。该诊断的敏感性和特异性分别为60%和100%,因为在最初良性或不确定狭窄的26个随访中,有26个和八个。对我们的NGS分析的恶性肿瘤的敏感性和特异性,此处称为Bilemut,分别为96.4%和69.2%。重要的是,在扩展随访后,四个双双阳性阳性中的一个发生了胰腺癌。值得注意的是,在初始诊断良性或不确定狭窄的患者中,双肿瘤的恶性肿瘤的敏感性为100%。对30个配对胆汁和组织样品的分析也证明了双血片的出色表现。在初始诊断阶段实施BILEMUT的胆道狭窄可以显着改善恶性肿瘤的检测,减少患者临床治疗的延迟,并帮助选择靶向疗法的患者。
紫罗兰色胆汁葡萄糖琼脂板(统一的)预期用途紫罗兰红胆汁葡萄糖琼脂板(统一)用于根据usp/ep/ep/ep/bp/jp/jp/jp/jp/ip/anconized方法来隔离和培养药物的肠杆菌科。摘要肠杆菌科包括乳糖发酵大肠菌菌,大肠杆菌的非乳糖发酵菌株以及其他参与食物损坏的沙门氏菌和志贺氏菌的非乳糖发酵物种。由于食品和乳制品的潜在污染,很重要的是检测肠杆菌科的成员而不是传统的大肠菌菌细菌。紫色红胆葡萄糖琼脂板(统一)是紫罗兰色琼脂的修饰。mossel等人,通过添加葡萄糖,修饰含有紫罗兰色胆汁琼脂的乳糖。Mossel等人的进一步工作表明,可以省略乳糖,从而导致紫罗兰色胆汁葡萄糖琼脂的制定。在培养基中,葡萄糖均由肠杆菌科的所有成员发酵,因此紫罗兰色胆汁葡萄糖琼脂(VRBGA)具有假定的肠杆菌科。VRBGA用于列举食品样品中的肠杆菌科。酪蛋白和酵母提取物的原理胰腺消化物提供营养,氨基酸,碳化合物,维生素B复合物,矿物质和微量元素。葡萄糖是一种能源。胆汁盐和晶体紫抑制革兰氏阳性细菌。中性红色是pH指示器。琼脂是固化。其他材料所需的细菌孵化器。使用指令配方 *成分G/L明胶7.0酵母提取物的胰腺摘要3.0葡萄糖一水合物10.0胆汁盐1.5氯化钠5.0中性红色0.03 Crystal Viret 0.002 Crystal Violet 0.002琼脂15.0 *调整以适应适合性能参数。
摘要:胆汁酸 (BA) 是一种重要的甾体分子,在超分子化学、药学和生物医学等多个领域的应用范围正在迅速扩大。本文系统地回顾了胆汁酸在肠肝循环中的运输过程和相关过程。重点介绍了特定或不太特定的胆汁酸转运蛋白及其定位。首先,向读者提供有关胆汁酸特性、其系统流动、代谢和功能的基本信息。然后,详细描述并以示意图形式说明运输过程,逐步从肝脏经胆管移动到胆囊、小肠和结肠;此描述还附有已知参与胆汁酸运输的主要蛋白质的描述。本文还讨论了胆汁酸溢出到系统循环和尿液排泄的情况。最后,该评论还指出了肠肝循环中一些研究较少的领域,这对于 BA 相关药物、前体药物和药物载体系统的开发至关重要。
摘要:胆汁酸 (BA) 是一种重要的甾体分子,在超分子化学、药学和生物医学等多个领域的应用范围正在迅速扩大。本文系统地回顾了胆汁酸在肠肝循环中的运输过程和相关过程。重点介绍了特定或不太特定的胆汁酸转运蛋白及其定位。首先,向读者提供有关胆汁酸特性、其系统流动、代谢和功能的基本信息。然后,详细描述并以示意图形式说明运输过程,逐步从肝脏经胆管移动到胆囊、小肠和结肠;此描述还附有已知参与胆汁酸运输的主要蛋白质的描述。本文还讨论了胆汁酸溢出到系统循环和尿液排泄的情况。最后,该评论还指出了肠肝循环中一些研究较少的领域,这对于 BA 相关药物、前体药物和药物载体系统的开发至关重要。
磁性微型机器人有望在最低侵入性细胞的治疗中受益。但是,它们通常会遭受其磁反应能力和生物医学功能之间必然的折衷。在此,我们报告了一个模块化的微型机器人,该微型机器人由磁性致动(MA)和细胞支架(CS)模块组成。具有强磁性和pH响应性变形的MA模块以及具有细胞加载功能的CS模块是通过三维打印技术制造的。随后,通过设计轴孔结构并自定义其相对尺寸来执行模块的组装,从而在复杂的环境中启用了磁导航,同时又不降低细胞功能。在目标病变处的按需拆卸,以促进CS模块的输送和MA模块的检索。此外,在体内兔胆管中验证了拟议系统的可行性。因此,这项工作提出了一种基于模块化设计的策略,该策略能够毫不妥协地制造手动型微型机器人,并刺激其发育以用于将来的基于细胞的治疗。
紫罗兰色胆汁葡萄糖琼脂,无乳糖预期用途的紫罗兰色胆汁葡萄糖琼脂,无乳糖用于枚举肠杆菌科。摘要紫罗兰色胆汁琼脂,MacConkey原始配方的修饰用于枚举coli-ear-earenes细菌群。紫罗兰色胆汁葡萄糖琼脂与乳糖,一种VRBA的修饰,是为枚举肠杆菌科设计的。它采用选择性抑制性成分晶体紫罗兰色和胆汁盐以及指示系统葡萄糖和中性红色。寻求的细菌将使葡萄糖分散并在菌落周围产生紫色区域。ISO委员会还推荐了这种媒介。 可以通过在厌氧条件下和/或在升高温度(即 div>)下孵育来提高VRBGA的选择性。 等于或高于42°C。 明胶和酵母提取物的原理消化剂是碳,氮,维生素和其他必要生长养分的来源。 葡萄糖一水合物是可发酵的碳水化合物,其利用可导致酸的产生。 中性红色指示器检测到如此形成的酸度。 水晶紫和胆汁盐混合物有助于抑制伴随的革兰氏阴性菌群和无关的植物。 氯化钠保持渗透平衡。 进一步的生化测试是阳性鉴定所必需的。 配方 *成分G/L明胶7.0酵母提取物3.0氯化钠5.0胆汁盐混合物1.5葡萄糖单水合物10.0中性红色0.03 Crystal Viret 0.002 Crystal Viret 0.002琼脂15.0最终pH(在25°C下)7.4±0.2 *调整了适合性能参数。ISO委员会还推荐了这种媒介。可以通过在厌氧条件下和/或在升高温度(即 div>)下孵育来提高VRBGA的选择性。等于或高于42°C。明胶和酵母提取物的原理消化剂是碳,氮,维生素和其他必要生长养分的来源。葡萄糖一水合物是可发酵的碳水化合物,其利用可导致酸的产生。中性红色指示器检测到如此形成的酸度。水晶紫和胆汁盐混合物有助于抑制伴随的革兰氏阴性菌群和无关的植物。氯化钠保持渗透平衡。进一步的生化测试是阳性鉴定所必需的。配方 *成分G/L明胶7.0酵母提取物3.0氯化钠5.0胆汁盐混合物1.5葡萄糖单水合物10.0中性红色0.03 Crystal Viret 0.002 Crystal Viret 0.002琼脂15.0最终pH(在25°C下)7.4±0.2 *调整了适合性能参数。储存和稳定存储在紧密闭合的容器和2°C-8°C下制备的培养基中脱水的培养基脱水。避免冷冻和过热。在标签上到期日之前使用。打开后,保持粉末状培养基闭合以避免补水。样品的类型临床样品;食物和乳制品样品;水样。样品收集和处理确保所有样品都正确标记。按照确定的准则遵循适当的技术来处理样品。某些样品可能需要特殊处理,例如立即制冷或免受光的保护,遵循标准程序。样品必须在允许的持续时间内存储和测试。使用后,必须在丢弃前高压灭菌对受污染的材料进行消毒。指示
摘要:胆汁酸代谢是肠道菌群调节的关键途径。peptaceTobacter(梭状芽胞杆菌)Hiranonis被描述为负责将原发性转化为狗中二次粪便未结合的胆汁酸(FUBA)的主要物种。该多步生物化学途径由胆汁酸诱导(BAI)操纵子编码。我们的目的是评估海藻链球菌的丰度,一个特定基因(BAICD)(BAICD)的丰度和次级FUBA浓度之间的相关性。在这项回顾性研究中,分析了24只狗的133个粪便样品。使用qPCR确定了海藻假单胞菌和BAICD的丰度。通过气相色谱 - 质谱法测量FUBA的浓度。BAICD丰度与次级Fuba(ρ= 0.7377,95%CI(0.6461,0.8084)),p <0.0001)表现出很强的正相关。类似地,海藻和次级fuba之间存在很强的相关性(ρ= 0.6658,95%CI(0.5555,0.7532),p <0.0001)。未观察到表现出FUBA转化和缺乏Hiranonis的动物。这些结果表明,海藻链球菌是狗中原发性胆汁酸的主要转换器。
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)