对可再生能源产生的投资是过渡到可持续能源和能源系统的重要组成部分。在这方面,托管能力(HC)的概念是可再生发电的投资者和系统运营商确定最大数量连接可再生资源的有用工具,而无需修改或加强网格。然而,现有研究的相当一部分涉及分销系统中问题的技术要求,同时忽略了传输系统和市场范围。可再生生成吸收减少了对电力部门中化石燃料资源的依赖,同时还表现出满足系统灵活性需求的能力。本文提出了一种基于市场的方法,以最大限度地考虑能源和灵活性市场的传输系统中可再生的HC。为此,开发了一个双重优化问题,以研究最大化可再生生成HC的盈利能力。在上层问题中,关于新一代投资的非负盈利能力,开发了HC最大化。较低级别的问题解决了能源和灵活性市场的社会福利最大化,在这些市场中,新的可再生能源产生可以参与其中。将配方转移到单级混合刻板线性编程(MILP)问题中,以避免双重模型的非线性。所提出的模型应用于2总线说明性示例和IEEE 24总线可靠性测试系统(RTS)。结果表明,可再生生成单元可以通过参与灵活性市场来提高其盈利能力,从而从市场的角度增加可再生的HC。
一辆用于运输人员和货物的车辆,汽车通常在道路上使用发动机进行电源运行。如今,汽车通过提供便利,舒适性和效率来在日常生活中发挥至关重要的作用。自发明以来,汽车发生了重大变化。第一辆汽油动力汽车是由卡尔·本茨(Karl Benz)于1885年发明的,标志着连续创新的开始。从蒸汽动力的车辆到现代电动汽车,汽车的历史充满了关键的发展,这些发展塑造了我们的生活方式和旅行习惯。本文探讨了汽车历史上的关键时刻,分类,重要系统及其运作方式,以帮助了解汽车的演变及其在现代生活中的作用。讨论包括汽车的历史,它们的分类,关键部分和系统,以及它们工作方式的概述。第一辆汽车由卡尔·本茨(Karl Benz)于1885年发明,由单缸发动机提供动力,每小时可能达到10英里。它以其轻巧的设计和转向系统而闻名。在1888年,贝莎·奔驰(Bertha Benz)在奔驰专利汽车Wagen进行了长时间的旅行,推广了汽车,并导致了Benz&Cie的首次商业作品。随着时间的流逝,汽车通过创新和不断变化的需求而发展。由蒸汽动力,汽油动力,柴油动力和混合动力汽车的时代均有助于现代汽车的发展。关键人物,例如Nicolas-Joseph Cugnot,Richard Trevithick,Karl Benz,Gottlieb Daimler,Rudolf Diesel和其他人为汽车历史做出了重大贡献。了解汽车的历史和运作能力可以为它们对现代生活的影响及其持续发展提供宝贵的见解。汽车的开发是由于需要更快,更轻,更有效的车辆的需求,从而创造了不同类型的发动机和燃料。从蒸汽动力汽车到混合动力汽车,每个时代都建立在上一辆汽车上,从而导致了我们今天看到的各种汽车。通过检查汽车的历史和关键系统,我们可以欣赏它们在我们的日常生活中扮演的重要角色及其未来创新的潜力。混合技术通过减少汽油和电力的燃油消耗和排放来彻底改变汽车行业。第一款商业上成功的混合动力汽车丰田普锐斯(Toyota Prius)于1997年推出,标志着向环保车辆的转变。电动汽车(电动汽车)由于推动清洁能源而闻名,早期电动汽车的历史可以追溯到19世纪后期。现代进步,尤其是特斯拉的进步,使电动汽车更加可行。尽管具有可持续性,EVS仍面临电池技术和充电基础设施的限制。汽车有多种类型,每种都为特定的需求和功能而设计。这些车辆可以根据传输系统,车轮数量,燃油类型等进行分类。例如,汽车可以具有手动,自动或CVT传输。车轮的数量还可以将汽车分类为两轮车,三轮车,四轮摩托车,六轮摩托车,甚至具有超过六个车轮的车辆。汽车由不同的燃料提供动力,包括汽油,柴油,电气和混合动力。这会导致各种类型的汽车,每辆汽车都基于它们使用的燃料。此外,可以将车辆分类为由内燃机(ICE),电动机或混合动力系统提供动力的车辆。发动机的位置和驱动器的类型还导致各种配置,例如前引擎前轮驱动,后引擎后轮驱动或中引擎后轮驱动。汽车车身风格和复杂的系统汽车可以根据其身体样式进行分类,包括敞篷车,越野,半转换,掀背车,轿跑车,轿车,轿车,轿车,小接口和交叉。汽车由各种复杂的系统和组件组成,每个系统都在确保车辆平稳运行方面发挥着至关重要的作用。发动机是通过内部燃烧产生动力,将燃料和空气转换为机械能的重要组件。曲轴在将扭矩从发动机转移到变速箱中起着重要作用。传输系统通过从发动机传输到车轮来调节速度和扭矩。燃油系统由关键组件组成,例如燃油箱,燃油泵,化油器和喷油器。这些组件共同起作用为发动机提供燃料以燃烧。汽车的主要内部零件,包括曲轴,电池,点火线圈和火花塞,都可以一起移动。位于发动机块上的曲轴使用电池中的电源将发动机的能量转换为运动。1。22。23。它由驱动发动机飞轮的电动机和小齿轮组成。汽车还需要一个可靠的制动系统来安全地放慢速度。该系统具有多个关键组件,例如脚步井中的刹车踏板和每个轮子上的制动卡钳。制动卡钳使用液压活塞和金属壳体施加压力,以控制制动。除了这些必需品之外,还有其他关键部分,例如主缸,制动液,制动线,制动器助力器,排气歧管,消音器,轮胎,轮子轮毂,底盘和车身面板,都促进了汽车的功能。底盘是所有车辆组件的结构框架,在发动机,悬架和车身面板安装在其上时提供了支撑。汽车本质上是由相互联系的系统组成的,例如发动机,电气系统,制动系统,排气系统,转向系统,悬架,轮胎和机箱,可帮助其有效地移动。车辆运动的旅程始于其发动机,该发动机通过内燃机将燃料转化为机械能,从而将化学能量转化为动能并启动传统车辆的功率流。相比之下,电动汽车从电池组开始,将电能存储为DC,然后通过电源逆变器转换为AC,以便电动机为电动机供电,从而产生机械能以驱动车轮。变速箱在调节发动机的功率方面起着至关重要的作用,并根据车辆的速度和负载对其进行调整。活塞运动 - 各种类型,周期和配置2。通过使离合器接合,发动机的功率将平稳地转移到变速箱上,从而实现了精确的齿轮移动,并有效地控制了扭矩和速度。驱动轴然后将旋转运动从变速箱传输到差速器,以确保不间断的功率流。差速器从传动轴接收功率,并将其分配到车轮,调整每个车轮的旋转以允许不同的速度,尤其是在轮流时。连接到差速器,车轴直接传递到车轮的传输功率。最终,车轮将旋转能量转换为正向运动,轮胎提供了必要的牵引力来抓住道路,从而将车辆前进。转向涉及一个组件的顺序系统,这些系统会改变前轮的方向。它是从驾驶员使用方向盘启动转弯运动开始的,该运动通过转向柱传输到转向器。这种机制将旋转运动转换为线性运动,移动的拉杆将推动和拉动以根据需要转动车轮。转向指关节安装在车轴上,允许车轮根据拉杆的输入进行枢转和转向。制动对于车辆的控制和安全至关重要,涉及各种系统以阻止汽车的系统。当驾驶员按下制动踏板时,该过程始于制动动作。取决于车辆,涉及不同的制动系统,包括机械,液压或气动系统,每个系统都具有不同的机制,可以在每个车轮上摄制制动器。24。25。25。车辆中的制动系统在确保道路上的安全和控制方面起着至关重要的作用。制动系统有两种主要类型:液压和气动。液压制动器使用流体压力将力从制动踏板传输到车轮,而气动制动器则使用压缩空气。两种类型都涉及各种组件,包括主缸,卡尺,鼓或鞋子,它们共同使用,将动能转化为热量,从而减慢车辆。制动过程涉及几个关键要素:液压或气动流体压力,制动垫和转子(用于盘式制动器)以及与道路相互作用的轮胎。每个组件在确保有效制动和整体车辆性能中起着至关重要的作用。SI和CI发动机的燃油系统主要组件3。排气系统目标和减少排放的关键组件4。润滑系统目标,组件和冷却机制5。冷却系统目标,组件和恒温器法规6。动力传输系统目标和关键组件7。转向系统目标,组件和动力转向系统8。制动系统目标,组件和主缸功能9。悬架系统目标,组件和减震器设计10.这些组件共同调节车辆的气候和整体性能。信息娱乐系统为乘员提供信息和娱乐服务,例如导航,流量更新和多媒体接口。示例包括仪表板显示器和后座信息娱乐系统。轮胎和轮胎可为电气和电子系统提供所有必需的能量•稳健,光线•零件•电池•电池•交流发电机•电压调节器•熔断器/电缆•点火开关•驱动皮带•驱动器系统和电气启用范围和电子启示器(EC)和电子启用(EC),驱动器•驱动器(驱动器)(驱动器)(驱动器)(驱动器)和电子启用(EC),并将电源组合(EC)组合(EC)和电子设备(Ection Verions and Ontors)(驱动器)(驱动器),并将电源组合(EC)和电子设备(EC)组合(EC)组合(EC)和电子设备(Ection Verions and Doction and)(驱动器)(EC)。内部照明系统旨在照亮车辆的内部,以保持居住者的舒适性和安全性。这些系统涉及各种组件,包括接线图和安装过程。配件控制系统管理不同车辆配件的电气操作,例如门,后备箱,窗户,镜子,雨刮器和大灯。这些系统通常具有自动或集成控件,以简化用户交互。V2X通信系统(远程信息处理)使车辆能够与其他汽车,道路基础设施,行人和路边服务共享关键的实时信息,以增强安全,保障,交通流量,舒适和娱乐。该技术包括缓解碰撞和远程诊断等功能。车辆诊断/检查系统通过程序和工具(例如车载和远程诊断,测试设备和定期检查)促进了标准化的车辆诊断和检查。
• PanopticAI 的技术将智能手机和平板电脑变成医疗级生命体征监测仪。 • 这是这家总部位于香港的初创公司实现确保可及性和可扩展性医疗保健使命的重要里程碑。 • 这项基于人工智能的技术用途广泛,包括远程医疗、远程患者监测、社区健康筛查、分散临床试验和个人健康。 • PanopticAI 的早期采用者包括香港鹰阁医院(IHH Healthcare 旗下医院)、万宁(香港领先的保健和美容连锁店)和保柏(跨国健康保险公司)。 (香港,2025 年 1 月 26 日) - 远程患者监测领域的领先创新者 PanopticAI 今天宣布,其非接触式生命体征监测软件已获得美国食品药品监督管理局 (FDA) 的 510(k) 批准。PanopticAI Vital Signs 应用程序是首个获得 FDA 批准的移动应用程序,可使用 iPhone 和 iPad 的内置摄像头进行非接触式脉搏率测量。这也使 PanopticAI 成为第一家获得 FDA 批准的软件即医疗器械 (SaMD) 的香港公司。PanopticAI 的技术利用专有的远程光电容积描记法 (rPPG) 算法,将随处可见的智能手机和平板电脑转变为医疗级生命体征监测仪。先进的人工智能和信号处理技术用于分析设备摄像头捕捉到的皮肤细微颜色变化,在短短 30 秒内准确测量脉搏率等生命体征。此次 FDA 批准代表着 PanopticAI 让医疗保健更易于获得和可扩展的使命的一个重要里程碑。通过利用智能手机的普及,PanopticAI 的技术消除了对专用设备的需求,大大降低了成本,并扩大了更广泛人群获得生命体征监测的机会。该公司的非接触式生命体征监测技术已被医院、保险公司和药房使用。其客户包括香港鹰阁医院(全球最大的医疗服务提供商之一 IHH Healthcare 旗下子公司)、万宁(香港领先的健康美容连锁店)和保柏(跨国健康保险公司)。临床测试针对反映美国人口普查数据的多样化患者群体进行,以确保 PanopticAI Vital Signs 应用程序在广泛用户中的准确性和可靠性。严格的非临床测试评估了该应用程序在各种条件下的性能,包括不同的照明、距离和用户特征,以确保在现实环境中可靠运行。PanopticAI Vital Signs 应用程序还经过了严格的网络安全和人为因素测试,以确保患者安全和易用性。“我们很高兴我们的技术获得 FDA 批准,这证明了我们致力于开发临床上合理、可访问的健康解决方案的承诺,”PanopticAI Vital Signs 首席执行官兼联合创始人 Kyle Wong 博士表示。
WS1146716164 用于 S-Stock S7 车队的 S7 M 门锁大修和为 S-Stock S7 车队(132 列火车)提供 M 门;2025 年 3 月 24 日 50 万 - 100 万英镑
抽象与Internet连接的移动设备改变了PEO-PLE访问信息的方式。与其他信息源一样,地图也从移动设备中受益并已重新启动,并且它们在新的环境中使用。但是,这些新环境通常会产生其他认知负载。我们深入探索了两种策略,设计师可以用来减轻与移动地图相关的高认知负载:通过改进的设计来支撑地图和环境之间的注意力分配,从而减少认知和减少认知负载。在审查这些策略时,我们考虑了它们与几个移动地图用例(导航,个人和协作规范决策,信息丰富和娱乐)的相关性。接下来,我们确定了对如何测量认知负载和地图使用上下文的了解的最新进展。最后,我们探讨了移动地图对人类行为和认知的广泛含义。我们确定了两个重要的跨切割研究问题:1)如何通过提供用户来促进其认知过程真正需要的东西来设计移动地图以减少认知负荷?; 2)如何通过支持地图和环境之间的用户注意力来管理和最小化移动地图特征所产生的内在额外认知负荷?
Starkov一直是基于BIM的数字双胞胎开发的先驱,与领先的设施所有者和建筑商合作,确保新建筑提供了适当质量的BIM,并将BIM与其他设施信息系统集成在一起以创建数字双胞胎。因此,斯塔尔科夫在成功部署数字双胞胎的方式上实现了两个重大障碍:现有设施的BIM可用性以及与现有人类驱动的工作流部署数字双胞胎的能力。
3相关工作9 3.1评估Android应用程序自动测试的GUI撕裂效率(2014)。。。。。。。。。。。。。。。。。。。。。。。9 3.2 Android中的本机和混合移动应用程序的增强模型的自动提取(2018年)。。。。。。。。。。。。。。。。。10 3.3图形用户界面测试工具的比较(2021)。。。。。11 3.4深入强化辅助GUI测试(2024)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 3.5导航移动测试评估:对Android GUI测试指标的全面统计分析(2024)。。。。。。。。。。。。。14 3.6用于基准在Android中对自动测试工具的覆盖范围(2024)。。。。。。。。。。。。。。。。15
在自然移动地图辅助导航任务中持续评估行人的认知负荷具有挑战性,因为对刺激呈现、人与地图的交互以及其他参与者反应的实验控制有限。为了克服这一挑战,本研究利用导航员在导航过程中的自发眨眼作为连续记录的脑电图 (EEG) 数据中的事件标记,以评估移动地图辅助导航任务中的认知负荷。我们研究了在给定路线上的移动地图上显示不同数量的地标(3 个 vs. 5 个 vs. 7 个)是否以及如何影响导航员在虚拟城市环境中导航时的认知负荷。认知负荷是通过眨眼相关的额中部 N2 和顶枕 P3 的峰值幅度来评估的。我们的结果显示,与显示 3 个或 5 个地标相比,顶枕 P3 幅度增加表明在 7 个地标条件下的认知负荷更高。我们之前的研究已经表明,与 3 个地标条件相比,参与者在 5 个和 7 个地标条件下获得了更多的空间知识。结合当前的研究,我们发现,与 3 个或 7 个地标相比,显示 5 个地标可以提高空间学习能力,而不会在不同城市环境中导航时增加认知负荷。我们的研究结果还表明,在地图辅助寻路过程中可能存在认知负荷溢出效应,即在地图查看过程中的认知负荷可能会影响环境中目标导向运动过程中的认知负荷,反之亦然。我们的研究表明,在设计未来导航辅助设备的显示时,应同时考虑用户的认知负荷和空间学习,导航员的眨眼可以作为有用的事件制造者,以解析反映自然环境中认知负荷的连续人类大脑动态。
关键的生物多样性领域(KBA)是国际公认的地点,对生物多样性的全球持久性产生了重大贡献。识别KBA的全球标准列出了识别全球KBA的商定标准(IUCN,2016年)。kbas已划定了界限,并且可能作为一个单位可以管理,但是称为KBA的界限并未授予网站上的法律受保护的身份或管理活动。falllands保护(FC)已在福克兰群岛周围近岸水域进行了针对性的研究。虽然该物种的机会性记录偶尔在几十年中被报道,但第一个证据表明,该物种在福克兰群岛的定期发生,该物种在2017年5月出现,当时在对Sei Whales,Balaenoptera Borealis的试验研究中多次记录了目击事件(Weir,2017年)。整个2017年冬季,许多右鲸的存在,随后在2018年发生了类似的情况(Weir and Stanworth,2019年),导致了Darwin Plus Plus资助的项目的发作,其中包括监视整个澳大利亚冬季(6月至8月)(2019年8月至8月)的分销,丰度和种群结构(2019年和2020年8月和2020年)(DPLUS082:WEIRIR,2022:WEIRIR,2022)。在2022年和2023年,这项工作扩展到包括卫星跟踪,摄影测量和空中丰度调查(DPLUS126:Weir,在Prep。),其特定目标是收集相关信息以潜在地支持KBA评估。使用IMMA标准B2(聚集)和标准C1(生殖区域)提出了该区域。2022年12月,足球俱乐部向西南大西洋地区IMMA车间提交了“东北福克兰右鲸鱼越冬区(IMMA)”的提案。IMMA被定义为栖息地的离散部分,对海洋哺乳动物物种很重要,这些物种有可能被划定和管理进行保护。在审查后,东北福克兰右鲸鱼越冬区IMMA 2被海洋哺乳动物保护区工作队接受。IMMA进程旨在在基于地区的环境中提供有关海洋哺乳动物保护的优先事项的建议,以协助国家和国际保护工作,包括对KBA的识别。本文档提供了支持信息,还可以将福克兰东北部的沿海水域视为支持重要南部右鲸鱼季节性繁殖聚集的KBA。概述了如何根据定量KBA标准评估该物种,并在2017年至2024年之间在Falklands收集的FC数据集提供了其他信息,以支持该应用程序。
(1)输入图像:模型的输入是大小为32×32×3的图像,其中32×32表示空间分辨率,3表示RGB通道(2)初始卷积层:卷积层应用于提取初始低级特征,例如提取初始低级特征,例如Edges和Tex-ters和Tex-ters。该层之后的输出的大小为16×16×32,其中32是过滤器生成的特征地图数量(3)瓶颈残留块:该体系结构的主要构件是瓶颈残留块。这些块对于特征提取很有效,并形成网络(4)过渡层的骨干:在最终的瓶颈块之后,速溶层进一步调整了特征的维度。输出大小减小到1×1×1290,代表高度连接的空间信息(5)完全连接的层:最后阶段是一个完全连接的层,可将功能映射到输出类概率中。输出大小为1×1×3,对应于带有3个输出类的分类任务