由于预训练的深度学习模型大量可用,迁移学习在计算机视觉任务中变得至关重要。然而,从多样化的模型池中为特定的下游任务选择最佳的预训练模型仍然是一个挑战。现有的衡量预训练模型可迁移性的方法依赖于编码静态特征和任务标签之间的统计相关性,但它们忽略了微调过程中底层表示动态的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们提出了一种名为 PED 的富有洞察力的物理启发方法来应对这些挑战。我们从势能的视角重新定义模型选择的挑战,并直接模拟影响微调动态的相互作用力。通过捕捉动态表示的运动来降低力驱动物理模型中的势能,我们可以获得增强的、更稳定的观察结果来估计可迁移性。在 10 个下游任务和 12 个自监督模型上的实验结果表明,我们的方法可以无缝集成到现有的排名技术中并提高其性能,揭示了其对模型选择任务的有效性以及理解迁移学习机制的潜力。代码可在 https://github.com/lixiaotong97/PED 上找到。
将两 (2) 个 SPC810e 控制器模块安装到垂直 DIN 导轨上。将 SPC810e 控制器模块连接到冗余 HN800 I/O 总线。将 SPC810e 控制器模块连接到冗余 CW800 对等总线。为 PN800 控制网络提供四 (4) 个用于 100/1000 MB 以太网的 RJ45 连接器。
4。氢车不是可行的净零解决方案。由于燃料的成本很高,燃料的可用性差,因此氢汽车的销售正在迅速下降。BEV的BEV比世界上的氢车高1000倍,消费者绝大多数选择BEV作为更引人注目的选择。随着高燃料成本,高昂的维持氢能设备的高昂成本以及缺乏氢供应,有限的氢加油基础设施已开始迅速收缩。在加利福尼亚,英国和丹麦就是这种情况。电动汽车充电基础设施在每个国家都更容易获得,消费者能够在家中或在数千个公共收费地点为其车辆充电。在奥林匹克运动会上积极促进氢车辆的后果将不可避免地延迟BEV的推出,从而损害了能量过渡的进度。
摘要 应对可持续发展政策挑战需要能够驾驭复杂性的工具,以改善政策流程和结果。过去十年来,人们对人工智能 (AI) 工具的关注度和政府对其使用的期望急剧上升。我们对学术和灰色文献进行了叙述性回顾,以调查人工智能工具如何用于政策和公共部门决策。我们发现,学者、政府和顾问对人工智能表达了积极的期望,认为人工智能可以或应该用于解决广泛的政策挑战。然而,关于公共决策者如何实际使用人工智能工具或对使用结果的详细洞察的证据却少得多。从我们的研究结果中,我们得出了将人工智能的承诺转化为实践的四个教训:1) 记录和评估人工智能在现实世界中对可持续发展政策问题的应用;2) 关注现有和成熟的人工智能技术,而不是投机性的承诺或外部压力;3) 从要解决的问题开始,而不是要应用的技术;4) 预测并适应可持续发展政策问题的复杂性。
摘要背景:在人工智能 (AI) 应用于医疗保健领域时,可解释性是最受争议的话题之一。尽管人工智能驱动的系统已被证明在某些分析任务中表现优于人类,但缺乏可解释性仍然引发批评。然而,可解释性不是一个纯粹的技术问题,相反,它引发了一系列需要彻底探索的医学、法律、伦理和社会问题。本文对可解释性在医学人工智能中的作用进行了全面评估,并对可解释性对于将人工智能驱动的工具应用于临床实践的意义进行了伦理评估。方法:以基于人工智能的临床决策支持系统为例,我们采用多学科方法从技术、法律、医学和患者的角度分析了可解释性对医学人工智能的相关性。基于这一概念分析的结果,我们随后进行了伦理评估,使用 Beauchamp 和 Childress 的“生物医学伦理原则”(自主、仁慈、不伤害和正义)作为分析框架,以确定医疗 AI 中可解释性的必要性。结果:每个领域都强调了一组不同的核心考虑因素和价值观,这些因素与理解可解释性在临床实践中的作用有关。从技术角度来看,可解释性必须从如何实现和从发展角度来看有什么好处两个方面来考虑。从法律角度来看,我们将知情同意、医疗器械认证和批准以及责任确定为可解释性的核心接触点。医学和患者的观点都强调了考虑人类行为者和医疗 AI 之间相互作用的重要性。我们得出的结论是,在临床决策支持系统中忽略可解释性会对医学的核心伦理价值观构成威胁,并可能对个人和公共健康产生不利影响。结论:为了确保医疗 AI 兑现其承诺,需要让开发人员、医疗保健专业人员和立法者意识到医疗 AI 中不透明算法的挑战和局限性,并促进多学科合作。关键词:人工智能、机器学习、可解释性、可解释性、临床决策支持
间充质干细胞(MSC)具有较高的外体释放能力,具有用作药物载体系统的潜力。外泌体还有效地证明了它们作为药物输送系统进入细胞的能力。这项研究旨在确定宫颈癌细胞(HELA)药物递送过程中MSCDERIVES外泌体影响的机制。在这项研究中,从出生时脐带(UCMSC)中分离出间充质干细胞。孤立的UCMSC以CD34,CD90,CD105和CD34标记为特征。使用电子显微镜检查外泌体的大小和形态。通过电穿孔将释放的外泌体(Exopac)加载释放的外泌体(Exopac),研究了在HELA癌症治疗中使用紫杉醇(Exopac)的潜力。确定exopac以较低的浓度和较短的时间影响了HeLa细胞。exopac抑制了SMAD3和SLUG蛋白,这些蛋白在细胞转移和血管生成中有效。同时,PAC显示了其对凋亡途径中蛋白质的影响,并诱导了BAX/BCL2比。在这项研究中,表明在上皮层层次过渡机制中有效的SMAD3和SLUG转录因子可以被外泌体药物载体抑制。已经证明,UCMSC可以用作药物输送系统,通过阻止细胞中的SMAD3和SLUG信号通路来抑制细胞侵袭。这项研究得到了Tubitak 1002的支持,项目编号为120S682。
摘要 算法系统和人工智能在新闻制作中的日益普及引发了人们对记者是否有能力以不违背新闻规范和价值观的方式理解和使用它们的能力的担忧。这种“可理解性”问题对于公共服务媒体来说尤其严重,因为这种复杂而不透明的系统可能会扰乱问责制、决策和专业判断。本文通过文件分析和对 14 名记者的访谈,概述了人工智能在 BBC 新闻制作中的部署,并分析了记者如何理解人工智能和算法。我们发现日益普及的人工智能与 BBC 记者的理解水平之间存在脱节,他们用猜测和想象来代替对这些技术的准确概念。这可能会限制记者有效和负责任地使用人工智能系统的能力,质疑其产出和在新闻制作中的作用,或者适应和塑造它们,也可能妨碍对人工智能如何影响社会进行负责任的报道。我们建议 PSM 在个人、组织和社区三个层面制定促进人工智能可理解性和素养的策略,并且我们从社会文化角度而不是单纯的技术角度重新定义人工智能可理解性问题,以便更好地解决规范性考虑。