人工神经网络 (ANN) 是受生物神经网络结构和功能启发而产生的计算模型。它们可以成为解释认知过程的一种有趣方法 [Hasson 等人,2020 年]。认知建模中使用的一组值得注意的 ANN 是双向联想记忆 (BAM),它基于神经动力学视角运行。BAM 使用反馈权重来学习刺激对,并且具有抗噪性,能够在仅提供部分信息的情况下回忆起输入 [Acevedo-Mosqueda 等人,2013 年]。BAM 通常使用双极编码,其中输入向量由 -1 和 1 的值组成,因为它比二进制编码提高了学习性能,其中输入向量由 0 和 1 组成 [Kosko,2021 年]。然而,在使用 ANN 进行认知建模时,它们必须建立在基于大脑中发生的过程的原则之上,同时避免仅仅提高计算效率的方法 [O'Reilly,1998]。二进制编码被认为在生物学上更合理,因为它更接近于脉冲的存在和不存在。此外,它提供了 0 的吸收特性,这可以实现更多的认知过程,如真正的稀疏性、门控、过滤等。因此,本文
摘要。本文改进了 Shor 攻击二元椭圆曲线所需的量子电路。我们提出了两种类型的量子点加法,同时考虑了量子比特数和电路深度。总之,我们提出了一种就地点加法,改进了 Banegas 等人在 CHES'21 中的工作,根据变体的不同,将量子比特数 - 深度乘积减少了 73% - 81% 以上。此外,我们通过使用额外的量子比特开发了一种非就地点加法。该方法实现了最低的电路深度,并将量子比特数 - 量子深度乘积提高了 92% 以上(单个步骤)。据我们所知,我们的工作在电路深度和量子比特数 - 深度乘积方面比所有以前的工作(包括 Banegas 等人的 CHES'21 论文、Putranto 等人的 IEEE Access'22 论文以及 Taguchi 和 Takayasu 的 CT-RSA'23 论文)都有所改进。结合实现,我们讨论了二元椭圆曲线密码的后量子安全性。在美国政府的 NIST 提出的 MAXDEPTH 度量下,我们工作中深度最大的量子电路为 2 24 ,明显低于 MAXDEPTH 极限 2 40 。对于门数 - 全深度乘积(一种估计量子攻击成本的度量,由 NIST 提出),我们工作中度为 571 的曲线的最高复杂度为 2 60(在经典安全性方面与 AES-256 相当),明显低于后量子安全 1 级阈值(2 156 量级)。
量子控制旨在操纵量子系统针对特定的量子状态或所需的操作。设计高度准确和效率的控制步骤对各种量子应用至关重要,包括能量最小化和电路汇编。在本文中,我们关注离散的二进制量子控制问题,并应用不同的优化算法和技术来提高计算效率和解决方案质量。特别是我们开发一个通用模型并以多种方式扩展它。我们引入了一个平方L 2-二烯函数来处理其他侧面范围,以模型要求,例如最多允许一个控件活跃。我们引入了一个总变化(TV)正常器,以减少控件中的开关数量。我们修改了流行的梯度上升脉冲工程(葡萄)算法,开发了一种新的乘数交替方向方法(ADMM)算法,以求解惩罚模型的持续放松,然后应用舍入技术来获得二元控制解决方案。我们提出了一种修改的信任区域方法,以进一步改善解决方案。我们的算法可以获得高质量的控制结果,这是由关于各种量子控制示例的数值研究所阐述的。
许多人工智能系统都依赖于标签,即在给定输入后,从一系列标签中选择一种来描述它。面部识别技术也是如此,其输入是一张脸,标签通常基于二进制系统,将数据分为男性/女性、儿童/成人和人类/动物等类别。近年来,计算机科学、人工智能和信息学领域的学者们对面部识别技术在种族和性别方面存在的问题进行了批判性研究,并指出了该技术存在的问题 [1,2,3,4]。先前的研究已经发现了一些关键问题,这些问题引发了人们对该技术的可靠性甚至实用性的担忧。例如,用于训练这些系统的数据通常不具代表性。在大多数情况下,绝大多数是白人和男性,这意味着肤色较深的女性被误分类的比例不成比例,正如对面部识别性别分类系统的综合分析所发现的那样 [1]。此外,训练数据集通常由从社交媒体 [5] 中抓取的图像组成,这意味着(除了隐私问题之外)它们只捕获那些使用社交媒体的人,具体
其中n i = | {t≤n≤2t - 1:s n,τ= i} | ,i = 0,1。与经典的自相关相比,算术自相关是伪随机序列的携带相关函数。Goresky和Klapper [3]将算术自相关扩展到互相关,并给出了具有理想算术交叉相关性的二进制序列的大家族。后来,他们将算术自相关推广到[4,5]中的非二元序列。对于更多背景,读者被转介给[6]。序列的算术相关性预计将尽可能小。在[2]中提出了legendre序列算术自相关的非平凡结合。Hofer,M´erai和Winterhof [7]证明了算术自相关性和较高订单的相关度量的关系如下:
•不需要氧气来代谢,但可以在其存在下生长•在氧气限制状态下,厌氧呼吸或发酵发生•具有超氧化物歧化酶和过氧化氢酶•EX。革兰氏阴性病原体
摘要 — 神经形态计算机提供了低功耗、高效计算的机会。虽然它们主要应用于神经网络任务,但也有机会利用神经形态计算机的固有特性(低功耗、大规模并行、共置处理和内存)来执行非神经网络任务。在这里,我们演示了一种在神经形态计算机上执行稀疏二进制矩阵向量乘法的方法。我们描述了这种方法,它依赖于二进制矩阵向量乘法和广度优先搜索之间的联系,并介绍了以神经形态方式执行此计算的算法。我们在模拟中验证了该方法。最后,我们讨论了该算法的运行时间,并讨论了未来神经形态计算机在执行此计算时可能具有计算优势的地方。索引术语 — 神经形态计算、图算法、矩阵向量乘法、脉冲神经网络
Google、IBM 等国际公司正在推进大规模量子计算机的研发。量子计算机在某些领域比经典计算机拥有更强大的计算能力,比如深度学习、化学、密码学等。如果研发出能够运行量子算法的大规模量子计算机,那么目前广泛使用的密码算法的安全性可能会降低甚至被突破。Shor 算法已经被证明可以突破 RSA 和椭圆曲线密码 (ECC) 的安全性。RSA 和 ECC 能够使用多久取决于量子计算机的发展和 Shor 算法的优化 [1]。在 [2] 中,作者估计对于 n 位密钥的 RSA,Shor 算法可以应用 2 n + 2 个量子比特。Gidney 估计了改进的 2 n + 1 个量子比特的数量 [3]。Shor 算法也可以应用于椭圆曲线中的离散对数 (即 ECC)。在 [4] 中,作者通过估算解决椭圆曲线离散对数所需的量子资源,指出 ECC 比 RSA 更容易受到量子计算机的攻击。在 [5] 中,作者证明了
设计并实现了一款 4 位二进制加权电流控制 DAC,该 DAC 采用了适合生物医学应用的各种开关方法。虽然这种架构占用的数字面积和功率较小,但容易出现故障,尤其是在输入转换次数较多时。作者计算了具有各种开关的 4 位二进制电流控制 DAC 的 INL 和 DNL:NMOS、PMOS 和传输门 [9, 12]。DAC 的评估基于各种参数,如分辨率、功耗、稳定时间、动态范围、非线性误差 (INL 和 DNL)。本文重点介绍 INL 和 DNL。差分非线性(缩写 DNL)表示实际步长相对于理想步长的偏差,其中步长是相邻输入值的模拟输出差 [6, 10]。DAC 的 DNL 在数学上表示如下:
Λ ≈ 60 Gyr。我们还表明,轨道周期和临界周期之比自然地从 Kretschmann 标量中得出,该标量是表征所有由德西特-史瓦西时空有效表示的双星系统的二次曲率不变量。双星系统在限制暗能量方面的适用性取决于其开普勒轨道周期 TK 与临界周期 T Λ 之比。TK ≈ T Λ 的系统最适合限制宇宙常数 Λ ,例如本星系群和室女座星系团。TK ≪ T Λ 的系统以吸引性引力为主(最适合研究修改后的引力校正)。TK ≫ T Λ 的系统以排斥性暗能量为主,因此可以用来从下方限制 Λ。我们利用后牛顿和暗能量修正的统一框架来计算有界和无界天体物理系统的进动,并从中推断出对 Λ 的限制。我们分析了脉冲星、太阳系、人马座 A* 周围的 S 型恒星、本星系群和室女座星系团,它们的轨道周期为几天到千兆年。我们的结果表明,当系统的轨道周期增加时,宇宙常数的上限会降低,这强调了 Λ 是双星运动中的关键周期。