使用 RNA 靶向小分子治疗疾病的可能性正在成为药物发现和开发的下一个前沿。与蛋白质靶向小分子相比,与 RNA 结合的小分子的化学特性仍然相对不太清楚。为了填补这一空白,我们生成了前所未有的大量 RNA 小分子结合数据,并利用这些数据得出可用于定义富含 RNA 结合剂的化学空间区域的物理化学经验法则 - 小分子靶向 RNA (STaR) 经验法则。这些规则已应用于公开的 RNA 小分子数据集,并被发现具有很大的可推广性。此外,许多获得专利的 RNA 靶向化合物和 FDA 批准的化合物也通过了这些规则,以及包括 Risdiplam 在内的关键 RNA 结合批准药物案例研究。我们预计这项工作将大大加速对 RNA 靶向化学空间的探索,以释放 RNA 作为小分子药物靶点的潜力。
tbl.tfClassExample <- data.frame(motifName=c("MA0006.1", "MA0042.2", "MA0043.2"), chrom=c("chr1", "chr1", "chr1"), start=c(1000005, 1000085, 1000105), start=c(1000013, 1000092, 1000123), score=c(0.85, 0.92, 0.98), stringsAsFactors=FALSE) # 这里我们说明如何添加具有所需名称的列:tbl.tfClassExample$shortMotif <- tbl.tfClassExample$motifName tbl.out <- associateTranscriptionFactors(MotifDb, tbl.tfClassExample, source="TFClass", expand.rows=TRUE) dim(tbl.out) # 许多 tfs 已映射,主要是 FOX 家族基因 tbl.motifDbExample <- data.frame(motifName=c("Mmusculus-jaspar2016-Ahr::Arnt-MA0006.1", "Hsapiens-jaspar2016-FOXI1-MA0042.2", "Hsapiens-jaspar2016-HLF-MA0043.2"), chrom=c("chr1", "chr1", "chr1"), start=c(1000005, 1000085, 1000105), start=c(1000013, 1000092, 1000123), score=c(0.85, 0.92, 0.98),字符串因子=FALSE)
摘要 果蝇多聚腺苷酸 RNA 结合蛋白 Nab2 与一种因遗传性智力障碍而丢失的人类蛋白质同源,它通过一组基本上未定义的靶 RNA 控制成年运动、轴突投射、树突树枝化和记忆。在本文中,我们展示了 Nab2 在调节头部转录组中约 150 个外显子/内含子的剪接方面的特殊作用,并重点研究了在雌性神经元中富集的性别决定因子 Sex-lethal ( Sxl ) 中雄性特异性外显子的保留。先前的研究表明,这种剪接事件在雌性中受 Mettl3 复合物对 N6-甲基腺苷 (m 6 A) 的修饰调控。在分子水平上,Nab2 与神经元中的 Sxl 前 mRNA 结合并限制特定位点的 Sxl m 6 A 甲基化。同时,降低 Mettl3、Mettl3 复合物成分或 m 6 A 读取器 Ythdc1 的表达可挽救 Nab2 果蝇的突变表型。总体而言,这些数据表明 Nab2 是 m 6 A 甲基化的抑制剂,并意味着神经组织中 Nab2 和 Mettl3 调节的 RNA 之间存在显著重叠。
。CC-BY-NC 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2022 年 7 月 28 日发布。;https://doi.org/10.1101/2022.07.28.501822 doi:bioRxiv 预印本
目的:CRABP2(Cellula Retinoi Aci Bindin Protei 2D)过表达可促进多种肿瘤进展,但对肺腺癌(LUAD)中CRABP2的综合分析研究较少。方法:利用TCGA、GEO、GEPIA2、UALCAN、Kaplan Meier plotter、LinkedOmics、TIMER、CCLE、Metascape等大型公共数据库和在线分析工具进行大数据挖掘分析,利用RNA干扰技术、CCK8检测、流式细胞术及凋亡检测、Western blot等进行体外实验。结果:研究通过对丽水市中心医院640例LUAD患者及640例健康对照血浆样本的分析,发现早期(IA期)LUAD患者血浆中CRABP2的表达水平高于对照组(平均31.6587±13.8541 ng/mL vs. 13.9328±5.5805 ng/mL,p<0.0001)。受试者工作特征曲线显示,CRABP2对预测早期LUAD具有一定的准确性,灵敏度为70.98%,特异度为94.53%,临界值为0.6551 ng/mL,曲线下面积为0.839(95%CI:0.817-0.859,p<0.0001)。与正常肺组织相比,CRABP2在LUAD中显著高表达(p<0.05)。LUAD中CRABP2高表达提示LUAD患者总生存期(95%CI:1.04-1.46,HR:1.23,p=0.018)和首次进展(95%CI:1.10-1.65,HR=1.35,p=0.0032)预后不良。CRABP2可能通过促进G2/M期转变、抑制细胞凋亡、参与免疫微环境调控等作用,促进LUAD的进展。CRABP2高表达会抑制免疫效应细胞的募集,促进免疫抑制细胞比例的增加,从而促进LUAD的进展。 LUAD中CRABP2的低表达可能使CD274(PD-L1)、HAVCR2和PDCD1LG2(PD-L2)的表达增强,而CRABP2的高表达可能使CTLA4、LAG3、PDCD1(PD-1)、TIGIT和IGSF8的表达增强。结论:CRABP2可能是LUAD诊断、治疗及预后的重要生物标志物。LUAD中CRABP2高表达的患者使用针对CD274、HAVCR2和PDCD1LG2的抑制剂治疗疗效可能不理想,而使用针对CTLA4、LAG3、PDCD1、TIGIT和IGSF8的抑制剂治疗疗效可能更好。大多数CRABP2高表达的癌症患者可能受益于免疫检查点抑制剂治疗。我们的研究结果为LUAD的诊断和治疗奠定了积极基础。
CD44在不同类型的细胞中发现,而其同工型CD44V3和CD44V6在侵入性癌细胞中被上调(例如,乳房,结肠,前列腺和肺癌细胞)。11,12除了HA外,已经鉴定出一种特定序列(CD44结合肽,CD44BP),该序列与CD44V3和CD44V6的特异性结合,并抑制肿瘤细胞迁移,侵袭和血管生成,通过Brblast生长因子2(FGF2)结束。13 - 15 CD44BP因此可以鉴定为肿瘤靶向的有前途的候选者。此外,它抑制了原发性B16-F10肿瘤生长(Melanoma),血管生成,肺结定和废除乳腺癌肿瘤球体形成,体外和体内。14,16个Zaiden和同事最近设计了一种与CD44BP结合的新共聚物,能够抑制临床前模型中的肿瘤生长速率,17证明CD44BP可能具有有趣的治疗特性。水纳米乳液中的油(O/W NES)具有许多要求是出色的DDS,例如生物相容性,生物渐进性和易于扩展性。这些系统是通过提高其生物化能力来提高血液中溶解度的理想载体。如前所述,可以用聚合物壳来加强它们。 18,19然而,由于管理这种精致的模板的困难,只有少数关于使用O/W NE作为聚合物纳米胶囊的核心的报道。为了将O/W NE用作多层聚合物沉积的液体模板,对nely控制尺寸至关重要
作为抗体-药物偶联物的新替代品,我们生成了“配体靶向”肽-药物偶联物 (PDC),它利用受体介导的内吞作用进行靶向细胞内药物递送。PDC 与细胞外配体形成复合物,然后与细胞表面的受体结合,通过内吞途径刺激细胞内摄取。螺旋-环-螺旋 (HLH) 肽被设计为药物载体,并随机化以得到构象受限的肽库。噬菌体展示库针对血管内皮生长因子 (VEGF) 进行筛选,以产生结合肽 M49,其表现出强结合亲和力 (KD = 0.87 nM)。共聚焦荧光显微镜显示肽M49与VEGF及其受体形成三元复合物,然后通过VEGF受体介导的内吞作用被内化到人脐静脉内皮细胞(HUVEC)中。骨架环化的肽M49K与药物单甲基奥瑞他汀E结合,得到PDC,其抑制VEGF诱导的HUVEC增殖。HLH肽及其PDC具有作为靶向分子治疗新方式的巨大潜力。
。CC-BY-NC-ND 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 5 月 14 日发布。;https://doi.org/10.1101/2020.05.06.079830 doi:bioRxiv 预印本
核酸纳米结构的自组装是由寡核苷酸模块通过互补序列之间的碱基配对选择性结合所驱动的。本文,我们报告了在腺苷配体控制下有条件组装的 RNA-DNA 混合纳米形状的开发。纳米形状的设计概念依赖于 DNA 适体的配体依赖性稳定,DNA 适体充当边缘稳定的 RNA 角模块之间的连接器。配体依赖性 RNA-DNA 纳米形状通过将腺苷结合与圆形闭合结构的形成相结合,在全有或全无的过程中进行自组装,这些结构通过在所得多边形中的连续碱基堆叠来稳定。通过筛选各种 DNA 适体构建体与 RNA 角模块的组合以形成稳定的复合物,我们确定了腺苷依赖性纳米方块,其形状通过原子力显微镜确认。作为传感器应用的概念验证,通过 DNA 适体成分的染料结合获得了对腺苷有响应的 FRET 活性纳米方块。
panasonic Energy的北美设施 - 与2025-2028的10,000吨合成石墨的协议 - 澳大利亚布里斯班,2024年2月9日-2024 -Novonix Limited(NASDAQ:NVX:NVX,ASX:ASX:NVX:NVX)(“ Novonix”)(“ Novonix”或“ Novonix”或“ Novonix”或“ Novonix”)北美电动汽车(“ EV”)电池的制造商今天宣布,签署了一项具有约束力的未接收协议,以提供高性能合成石墨阳极材料,该材料将提供给Panasonic Energy的北美运营,从田纳西州查塔努加的Novonix Riverside设施中。根据《未加入协议》,Panasonic Energy已同意在2025 - 2028年期间购买至少10,000吨阳极材料以在其美国工厂使用。在学期中,如果松下能源要求额外的卷,Novonix应尽力提供增加的量。作为领先的电池提供商,Panasonic Energy正在努力扩大其在北美的电动电池的生产,以满足需求的增加,同时还增加了当地采购的材料的百分比。Panasonic Energy正在建立可持续的供应,并努力达到目标,以减少2031年电动汽车的整个锂离子电池供应链的碳足迹,而不是2022年的水平。《降低通货膨胀法》为公司建造电池和电池材料的当地供应链提供了重大潜在的好处。Novonix和Panasonic Energy于2019年与子公司Sanyo Electric Co.,Sanyo Electric Co.有限公司签署了谅解备忘录后,开始共同进行产品采样和测试。根据第45倍的高级制造生产信用,这些好处支持关键关键关键矿物质和电池材料(例如合成石墨)的生产,而Novonix将为其符合条件,以及用于电池电池的本地制造,而Panasonic Energy的北美工厂将符合该电池的资格。随着松下能源在北美扩大其细胞制造的影响力,Novonix的产品开发和采样集中在Panasonic Energy对美国工厂的产品需求上。Novonix的Riverside设施将成为第一个专门用于北美电池行业的高性能合成石墨的大规模生产地点,并计划于2024年末开始生产,计划将产量增至20,000吨每年20,000吨(TPA),以满足预期的客户需求。最近,该公司宣布了美国能源部制造和能源供应链办公室(“ MESC”)通过两党基础设施法向河滨扩张授予了1亿美元的赠款,以加强本地供应链。MESC赠款资金将支持设备的安装和调试,以从Riverside产生目标的20,000 TPA。