*电子邮件:p.melchiorre@unibo.t对反应的选择性的精确控制是一个基本目标。尽管在实现立体控制方面已经获得了巨大的进步,但底物内官能团(化学选择性)的选择性操纵仍然是一个挑战。醛的氰化作用提供了一个说明性的例子:1,2-将亲核氰化物添加到醛基团中是立体选择性cat-alytic过程的第一个例子之一。相比之下,即使是在紫红色的变体中,也是线性α,β-未饱和醛的共轭氰化物仍然存在染料。主要难度在于在首选氰化物1,2粘合方面达到1,4化学选择性。在这里,我们报告了一种不对称的催化方法,以实现二烷的独家结合氰化。手性有机催化剂具有可见光激活的光蛋白-DOX催化剂的协同作用促进了抑制的单电子还原,从而诱导了正式的极性反转。在特征上具有亲核的手性自由基被具有完美的1,4化学选择性和良好立体控制的亲电氰化物源拦截。
在杂志杂志的出版物中,由弗朗索瓦·福克斯(FrançoisFuks),癌症表观遗传学实验室,ULB医学学院,ULB-癌症研究中心和H.U.B. Jules Bordet Institute领导的研究人员。表明,实际上,DNA和RNA表观遗传学可能比以前想象的更相互联系。研究人员发现他们形成了互补的调节系统,其中DNA表观遗传学组织可用的基因和RNA表观遗传学会动态调节其使用。
优化酶在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们通过使用机器学习(ML)从超高通知功能屏幕中融合进化信息和实验数据来开发一种技术,用于设计蛋白质变体的活跃和多样化的蛋白质变体库。我们在多轮运动中验证了我们的方法,以优化NUCB的活性,nucB的活性,核酸酶酶在慢性伤口的治疗中应用。我们将我们的ML引导运动与维特罗定向进化(DE)和尼里科(Silico In-Silico)命中重组(HR)的平行运动进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进,并且在命中率和多样性方面表现出色。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导酶设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
对单分子水平的蛋白质的分析发现了在合奏平均技术中掩盖的异质行为。传统上,酶的数字定量涉及通过促荧光底物的转化将单个分子划分为微室的单分子的观察和计数。基于线性信号扩增的策略仅限于几种酶,其周转率足够高。在这里我们表明,通过将指数分子放大器的敏感性与DNA-酶电路的模块化和液滴读数结合,允许在单分子水平上特异性检测几乎任何D(R)NA与NA相关的酶促活性。该策略(表示为数字PUMA)已通过十几种不同的酶进行了验证,其中包括许多催化速率缓慢的酶,并降低到Pyogenes cas9的明显单周转极限。数字计数独特地产生绝对摩尔定量,并在所有经过测试的商业制剂中揭示了很大一部分非活性催化剂。通过实时监测单个酶分子的扩增反应,我们还提取了催化剂种群中活性的分布,从而揭示了各种应力下的替代失活途径。我们的方法极大地扩大了可以从单分子分辨率下的定量和功能分析中受益的酶的数量。我们预计数字puma将作为一种多功能框架,用于在诊断或生物技术应用中进行准确的酶定量。这些数字测定也可以用于研究蛋白质功能异质性的起源。
河流生态系统中的生物多样性丧失速度要比限制系统更快,更严重,并且需要空间保护和恢复计划来停止这种侵蚀。关于生物多样性和物种分布的状态和变化的可靠且高度解决的数据对于有效措施至关重要。的高分辨率图仍然有限。与全球卫星传感器的耦合数据具有广泛的环境DNA(EDNA)和机器学习可以实现河流生物分布的快速而精确的映射。在这里,我们研究了使用沿瑞士和法国Rhone River的110个地点的埃德纳数据集组合这些方法的潜力。使用Sentinel 2和Landsat 8图像,我们产生了一组生态变量,描述了河走廊周围的水生栖息地和陆地栖息地。我们将这些变量与基于EDNA的存在和29种鱼类的不存在数据相结合,并使用了三种机器学习模型来评估这些物种的环境适用性。大多数模型表现出良好的性能,表明从遥感中得出的生态变量可以近似鱼类分布的生态决定因素,但是水衍生的变量比河流周围的陆地变量具有更强的关联。物种范围的映射表明该物种沿着瑞士的物种占用物的显着转移,从其瑞士阿尔卑斯山的来源到法国南部的地中海出口。我们的研究消除了将遥感和EDNA结合到大河中物种分布的可行性。该方法可以扩展到任何大河以支持保护方案。
统计关系学习和AI(starai)[11,32],另一方面,在存在不同的对象和关系的数量(即在关系领域)的存在。但是,关系RL [8]相对尚未探索,尽管存在某些方法[42],但它们并不能按照大型任务进行扩展,并且对于多基因设置而言肯定不容易扩展。一个有希望的方向正在利用层次(和关系)计划的组合,以探索多个级别的抽象和RL来学习低级政策[16,20]。受到AI的这些不同子区域的成功的启发,我们采用了一种方法,该方法利用了关系层次规划师的力量作为噪音,关系领域中多种学习的集中式控制器。我们所提出的方法称为多基金关系计划和强化学习(MarePrel),将计划分解,集中控制和代理位置,用于构建特定任务表示的Starai,以及通过这些专业表示的有效和有效学习的深度RL。我们做出以下关键贡献:(1)据我们所知,我们提出了可以跨越多个对象和关系概括的关系构造域的第一个多基因系统。正如我们在相关工作中所显示的那样,多种文献中存在着重要的文献,关系学习以及计划和学习的整合。我们的工作是在多构想系统中将所有这些方向相结合的第一项工作。(2)为了实现这一目标,我们开发了MarePrel,这是一种综合计划和学习体系结构,能够在关系领域的不确定性下进行多种学习。具体而言,玛丽·玛丽(Mareprel)的有效学习和推理能力源于其关系形式的代表,高级计划的分解以及最低级别的深度RL的使用。(3)最后,我们在一些关系多基因领域中证明了我们的AP级的有效性和概括能力。我们将基于不同基于RL的多构基线(包括明确使用子任务信息)进行比较,并说明了我们方法的优越性。本文的其余部分如下:在审查了相关工作并介绍了必要的背景之后,我们概述了我们的多基因框架,并更详细地讨论算法。然后,我们通过讨论未来研究的领域在结束论文之前对一些关系的多种关系领域进行了实验评估。
摘要:利用过去来改善未来的预测,需要对气候和温室气体(GHG)(GHGS)对观察到的气候变化的个人气候贡献进行理解和定量,这受到气候溶液强迫和反应的大量不确定性的阻碍。为了估算历史气溶胶响应,我们通过结合观察到的热带潮湿和干燥区域观察到的变化的信号,半明确温度不对称的温度不对称,全球平均温度(GMT)以及全球平均降水(GMLP)(GMLP)的信号来归因于温度和降水的关节变化。指纹代表气候反应对气溶胶(AERS)和其余的外部强迫(NOAER;主要是GHG)源自来自历史单和所有模型的大型组合,该模型来自耦合模型对间隔项目的第6阶段的三个模型,并使用完美的模型研究选择。是由不完善的模型研究和水文灵敏度分析支持的,该分析支持了我们选择温度和降水细纹的选择。我们发现,包括温度和降水在内的诊断效果稍微更好地限制了纯粹基于温度或仅基于GMT的诊断,并允许AER冷却的归因(即使在纤维上不包含GMT时)。这些结果在来自不同气候模型的纤维上具有鲁棒性。AER和NOAER的估计贡献与其他已发表的估计值一致,包括最新IPCC报告的估计。最后,我们将气溶胶诱导的冷却的0.46 K([2 0.86,2 0.05] k)的最佳估计归因于2010年Noaer升温的1.63 K([1.26,2.00] k),相对于1850年至1900年,使用GMT和GMLP的综合信号。
世界农业需要找到适当的平衡,以应对养活人口增长,减少其对生物多样性的影响和最小化温室气体(GHG)排放之间的三元素。在本文中,我们评估了各种场景,这些方案在农业,林业和其他土地使用(AFOLU)行业中实现了4.3 GTCO 2,EQ /年温室气体缓解。< /div>。场景包括三种温室气体缓解政策的各种混合:第二代生物燃料生产,饮食变化和牧场造林。我们发现,将缓解措施集中在单个政策上可以为粮食安全或生物多样性保护的单一指标带来积极的结果,但对他人产生了重大的负面影响。所有三种缓解政策的平衡投资组合虽然对任何单一标准都不是最佳的,但通过避免对粮食安全和生物多样性保护的严重负面影响来最大程度地减少权衡。在区域规模上,不同区域环境中的生物多样性和粮食安全之间在全球范围内看到的权衡是细微的。
基于数据同化和机器学习的组合是一种新颖的方法。新的混合方法是为两个范围设计的:(i)模拟隐藏的,可能是混乱的,动态的,并且(ii)预测其未来状态。该方法在于应用数据同化步骤,在这里进行集合Kalman滤波器和神经网络。数据同化用于最佳地将替代模型与稀疏嘈杂数据相结合。输出分析在空间上完成,并用作神经网络设置的训练来更新替代模型。然后迭代重复两个步骤。数值实验是使用混乱的40变量Lorenz 96模型进行的,证明了所提出的杂种方法的收敛和实用技能。替代模型显示出短期的预测技能,最多两次Lyapunov时,检索正lyapunov指数以及功率密度频谱的更伟大的频率。该方法对关键设置参数的敏感性也会显示:预测技能会随着观察噪声的增加而平稳降低,但如果观察到少于模型域的一半,则突然下降。数据同化与机器学习之间的成功协同作用在这里通过低维系统证明,鼓励对具有更复杂动力的此类混合体进行进一步研究。