摘要本文探讨了可生物降解塑料在促进可持续包装实践中的作用。它讨论了可生物降解的塑料的类型,包括基于淀粉的塑料,聚乳酸(PLA)和多羟基烷烃(PHA),以及它们在减少环境污染中的潜在应用。本文还解决了与可生物降解的塑料相关的优势和挑战,并强调了它们在减少废物和可持续性中的作用。通过研究生物降解的生物降解过程,可生物降解的塑料的未来前景,该论文突出了它们在实现更可持续的包装行业方面的重要性。关键词:可生物降解的塑料,可持续包装,基于淀粉的塑料,聚乳酸(PLA),多羟基烷酸酯(PHA)。
发现,基于生物的α-甲基二氨基二甲酰基酮和α-亚甲基γ-谷氨酸甲酰胺(膜)(膜)具有与化石基甲基甲基甲酸酯(丙烯酸酯)单体相似的化学结构,能够与化石基于化石基于化石的均值相似甚至具有优质性能。单体反应性的差异会影响共聚物的结构,这反过来影响聚合物特性,例如热行为(玻璃过渡温度)。通过自由基悬架聚合将膜掺入在可热膨胀微球的聚合物壳中后,对这些特性进行了评估。用基于生物的膜代替基于化石的甲基甲基丙烯酸甲酯(MMA)导致部分基于生物的可热膨胀微球(TEMS),从而发现随着膨胀温度的升高,膨胀性能受到影响。甚至有可能与完全基于化石的聚合物壳的TEMS相比,具有完全生物的聚合物壳的TEMS,其膨胀温度窗口要高得多。
为此,在可生物降解的聚合物和三种可生物降解聚合物的商业混合物(在中等含量和嗜热条件下)进行了批次厌氧消化实验。在中嗜和热嗜热条件下,仅聚(3-羟基丁酸)(PHB)和热塑性淀粉(TPS)表现出快速(25-50天)和重要(分别为57-80.3%和80.2-82.6%)向甲烷的转化为甲烷。从乳酸(PLA)(PLA)的甲烷生产速率非常低,在一定程度上,需要500天才能达到最终的甲烷产生,这对应于PLA转化为74.7-80.3%的PLA转化。在嗜热条件下,PLA的甲烷生产速率大大提高,因为仅需要60至100天才能达到相同的终极甲烷产生。乳酸利用细菌,如易二菌,摩尔菌和tepidanaerobacter很重要。同样,在38°C和58°C的TPS消化过程中突出了淀粉降解的细菌(来自梭状芽孢杆菌)。先前已知的PHB降解器(即,在pHB的嗜嗜和热嗜热AD期间,观察到肠杆菌,肠杆菌,delafieldii和cupriavidus)。
用什么测试来确定生物降解性?结果如何?使用 ASTM D5511 测试模拟更潮湿和生物活性的垃圾填埋场,与纤维素相比,EVRgreen® EPS 在四年内可生物降解 94%,但美国并非所有地区都存在此类垃圾填埋场。所述的降解速度和程度并不意味着 EVRgreen 会继续降解。任何禁止对此产品或类似产品做出生物降解性声明的州或地方均不视为做出任何声明。
人们越来越关注由于过度使用塑料而引起的环境问题,并且开始寻找食物包装的替代可生物降解材料。因此,在目前的工作中,与纯PVA膜相比,使用果胶和聚乙烯醇(PVA)复合材料制备了可生物降解的塑料膜。使用FT-IR,SEM和拉伸技术对制备的膜进行表征。获得的结果表明,PVA膜没有生物降解率,而果胶膜显示出非常速度的降解。PVA/果胶膜的比例分别为2:1、1:1和1:2分别为9.4、12.2和15.2%的重量。PVA/果胶膜的 FT-IR光谱通过冻融过程表现出PVA和果胶之间的良好相互作用。 PVA膜的平滑表面结构在SEM下没有或几个孔出现,而果胶膜的表面结构则粗糙,毛孔很粗糙。 PVA/果胶膜表面显示中间特征。 拉伸试验表明,PVA膜的最大应力从16.25±0.79增加,而果胶膜的最大应力从PVA/果胶膜上增加了31。 Also, the maximum force increased from 14.63 ± 0.71 for PVA membrane and 7.72 ± 0.68 for pectin membrane to become 26.15 ± 0.80, 25.27 ± 1.51, and 48.00 ± 1.82 for PVA/Pectin membrane at the levels of 1:1, 2:1, 1:2, respectively, indicating enhanced mechanical properties with the increase of果胶浓度。 关键字:果胶;聚乙烯醇(PVA);可生物降解包装膜;微观结构;机械性能FT-IR光谱通过冻融过程表现出PVA和果胶之间的良好相互作用。PVA膜的平滑表面结构在SEM下没有或几个孔出现,而果胶膜的表面结构则粗糙,毛孔很粗糙。PVA/果胶膜表面显示中间特征。拉伸试验表明,PVA膜的最大应力从16.25±0.79增加,而果胶膜的最大应力从PVA/果胶膜上增加了31。Also, the maximum force increased from 14.63 ± 0.71 for PVA membrane and 7.72 ± 0.68 for pectin membrane to become 26.15 ± 0.80, 25.27 ± 1.51, and 48.00 ± 1.82 for PVA/Pectin membrane at the levels of 1:1, 2:1, 1:2, respectively, indicating enhanced mechanical properties with the increase of果胶浓度。关键字:果胶;聚乙烯醇(PVA);可生物降解包装膜;微观结构;机械性能
渔具通常由不可生物降解的材料制成,包括聚酰胺 (PA)。这些渔具一旦丢失在海洋中,将产生长期影响,包括海洋垃圾、微塑料的产生、化学物质的渗出,以及由于其耐用性而导致的长期幽灵捕捞。使用可生物降解的共聚酯材料,如聚丁二酸丁二醇酯-己二酸丁二醇酯-对苯二甲酸酯 (PBSAT) 和聚丁二酸丁二醇酯-己二酸丁二醇酯 (PBSA) 作为渔具材料,被认为是减少相关影响的潜在解决方案。海洋是一个复杂的环境,塑料材料可以发生多种降解路径,将各种因素分离可以帮助理解每个潜在因素的影响。本研究重点关注纯水水解现象对可生物降解共聚酯 PBSAT 和 PBSA 的影响,并与 PA 单丝在 40 ◦ C、60 ◦ C、70 ◦ C 和 80 ◦ C 下的加速老化进行比较。作为单一因素加速老化过程,可以预测在其他温度下机械强度随时间的损失,即 2 ◦ C、10 ◦ C、15 ◦ C、20 ◦ C 和 30 ◦ C。使用了不同的寿命终止标准。本研究得出结论,仅通过纯水解,使用可生物降解单丝代替 PA 可以大大缩短达到寿命终止标准的时间,但仍比预期的使用时间长。例如,在 2 ◦ C 时,PBSAT、PBSA 和 PA 分别需要大约 10 年、20 年和 1000 年才能失去其初始断裂应力的 50%。
日期:6/6113,-----------'注意:该计划不是法律工程文档,而是电子副本。原件。由工程师签署并批准用于公共事务,并在交通运输部门保存下来。可以根据要求获得副本。可生物降解侵蚀
多年来,金属,聚合物和陶瓷已经在各种医疗植入物中找到了应用。金属被广泛用于承载植入物中,范围从板,骨折固定的螺钉到臀部,膝盖,肩膀,脚踝等的关节假体。最常用的金属是316升不锈钢,钴铬合金,钛合金和镁合金[3,4]。聚合物已用于面部假体,肾脏和肝脏部位,心脏成分,假牙和髋关节,膝关节,例如,超高分子量聚乙烯(UHMWPE)载荷装置[4]阀[5]。陶瓷用于替换或修复硬结核组织,例如高强度,韧性和表面饰面,例如骨骼和牙齿[6]。
独特的管道布局类似于静态混合器几何形状,允许在壳侧实现均匀的熔体流动,并在低剪切速率下以较小的压降为代价在粘性流中形成层流,这对于连续本体聚合特别有用。该过程增强了熔体之间的热传递,并与单位体积极高的表面积完美结合,从而实现了对热传递的精确控制,从而实现了高转化率和持续的高聚合物流量。此外,SMR 的出色径向混合可确保局部浓度和温度梯度的最佳均匀化,同时避免通道、添加剂和催化剂等分布不均或死区。由于没有旋转部件,SMR 设计降低了维护成本以及运营/能源成本。关于粘度,SMR 在广泛的粘度范围内表现出色,使其适用于各种聚合物生产甚至多产品工厂,例如 PLA 和 PCL。在产品切换的情况下,由于其高表面,可以快速完成任何聚合物等级的更改,从而减少不合格产品的数量。
塑料污染已成为全球环境危机,每年有数百万吨塑料废物进入我们的海洋,垃圾填埋场和生态系统。传统塑料可以在环境中持续数千万年,对野生动植物和人类健康构成威胁[1]。响应这个日益增长的问题,可生物降解的塑料已成为一种潜在的替代方案,可以随着时间的流逝而自然降解。可生物降解的塑料旨在通过微生物的作用分解成简单,无毒的物质[2]。这个过程被称为生物降解,为塑料生产和处置提供了更可持续的方法。但是,可生物降解塑料的有效性和环境益处一直是辩论和审查的主题。本研究文章旨在探索可生物降解的塑料背后的科学,检查其组成,降解机制,环境影响和潜在应用[3]。通过提供可生物降解的塑料的全面概述,我们试图评估它们在缓解塑料污染和推动环境可持续性方面的作用。
