持续感染高危型人乳头瘤病毒 (HR-HPV) 以及随后的病毒癌蛋白 E6 和 E7 上调被认为是宫颈癌变中的关键分子事件 ( 1 , 2 )。这些癌蛋白会干扰关键宿主肿瘤抑制蛋白的功能,导致恶性转化。具体来说,E6 会促进 p53 的降解,p53 是一种对程序性细胞死亡至关重要的肿瘤抑制因子,而 E7 则会抑制通常调节细胞周期进程的视网膜母细胞瘤蛋白 (pRb) ( 3 , 4 )。p53 和 pRb 功能的破坏会导致染色体不稳定和癌症发展 ( 5 )。在各种 HR-HPV 类型中,HPV16 最为常见(其次是 HPV18),是全球 50% 以上宫颈癌病例的诱因 ( 6 – 8 )。 HPV 感染发生在宫颈上皮未分化的基底细胞中,病毒早期蛋白 E1、E2、E6 和 E7 在此细胞中表达水平较低(9)。随着被感染细胞的分化,病毒晚期蛋白 L1 和 L2 产生,用于衣壳的形成和病毒颗粒的组装。E4 蛋白通过与宿主细胞骨架结合协助病毒颗粒的释放(10,11)。高免疫原性的 L1 蛋白的产生受宿主蛋白和表观遗传修饰的调控,确保其仅在分化细胞中表达,从而逃避免疫检测(12)。HPV16 L1 蛋白及其相关 mRNA 在低度宫颈病变和增殖性感染中可检测到,但其缺失与高度病变高度相关(13,14)。虽然 L1 编码序列在转化细胞中保持完整,但衣壳蛋白不会合成(15)。尽管 HR-HPV 感染是宫颈癌的必要前兆,但只有一小部分感染者会发展为宫颈癌 ( 16 , 17 )。目前的 HPV DNA 检测不足以准确识别需要阴道镜检查的 HR-HPV 阳性女性,因为许多感染都是暂时性的 ( 18 )。目前建议对 HPV16 和 HPV18 进行基因分型,并结合细胞学检查进行宫颈癌筛查 ( 19 );然而,需要更特异的生物标志物来分类 HPV16 或 HPV18 阳性的女性,并减少不必要的阴道镜转诊 ( 20 , 21 )。宿主基因和 HPV 基因的甲基化已得到广泛研究,并被证实与宫颈异常有关 ( 22 , 23 )。甲基化修饰,例如 L1 基因内的 CpG 位点甲基化,可以控制该基因的表达,该基因在转化的宫颈细胞中经常被沉默。亚硫酸氢盐测序报告称 3' L1 基因区域的甲基化水平较高,表明其在控制 L1 表达方面具有潜在作用 ( 24 , 25 );然而,亚硫酸氢盐测序和直接测序等方法可能导致临床样本中甲基化水平估计不准确。焦磷酸测序,一种更准确的定量方法,已用于测量 HPV DNA 甲基化,揭示了各种 HPV 类型的 L1 和 L2 区域的高甲基化( 26 , 27 )。最近的研究表明,L1 基因甲基化可以区分宫颈上皮内瘤变 3 (CIN3) 和浸润性宫颈癌( 26 , 28 )。
传统的还原主义方法已成功地用于获得有关单基因疾病和疾病的知识。然而,这种策略不足以探测和理解诸如糖尿病,代谢综合征(MS)和胰岛素相关疾病之类的复杂疾病,其中多种基因和系统受到干扰。理解这种复杂的相互关系和串扰需要整体或系统级集成,这可以通过单词/综合多摩学方法来实现。本研究主题探讨了单词和综合多摩s分析如何改变我们对代谢综合征,糖尿病和胰岛素相关疾病的机制,生物标志物和治疗靶标的复杂网络的理解。与还原主义的方法不同,单词/多摩斯技术为复杂疾病提供了整体观点,强调了它们有可能促进个性化医学的潜力,并具有针对性的疗法,并在针对这些疾病的情况下为这些疾病提供了新的希望。
结肠腺癌(COAD)是第三常见的癌症,是全球癌症死亡的第二大主要原因,这已成为全球公共卫生挑战(1)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。 开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。 近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。 因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。 细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。 ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。 临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。 最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。 ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。此外,ECM的高密度阻碍了免疫细胞的内化,这会影响肿瘤免疫疗法的作用(16-18)。因此,基于与ECM相关基因的预后模型将为预测COAD患者的复发提供基础。瘦素是瘦素基因(LEP)的糖蛋白产物。流行病学研究支持LEP与COAD风险增加有关(19)。研究表明,COAD组织中LEP mRNA的表达水平上调,这与COAD患者的预后不良有关(20,21)。周围神经形成复杂的肿瘤微环境,由多种细胞类型和因子组成,包括神经生长因子(NGF)。NGF在几种实体瘤的生长,侵袭和转移中起重要作用。Lei等。 发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。 Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Lei等。发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Hayakawa等。表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。他等人。证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床在这项研究中,我们鉴定了与WGCNA和Lasso-Cox回归相关的三个与ECM相关的基因(LEP,NGF和PCOLCE2)。
在过去十年中,出现了一种利用免疫系统对抗肿瘤的癌症治疗新模式。这些免疫疗法的新作用机制也给药物开发带来了新的挑战。生物标志物在免疫疗法早期临床开发的几个领域中发挥着关键作用,包括作用机制的证明、剂量确定和剂量优化、不良反应的缓解和预防以及患者丰富和适应症优先排序。我们讨论了在早期开发研究中建立一组生物标志物的预后、预测方面以及将生物标志物的变化与临床疗效联系起来的统计原理和方法。所讨论的方法旨在避免偏见并得出可靠且可重复的结论。本综述针对对免疫疗法背景下的生物标志物的战略使用和分析感兴趣的药物开发商和数据科学家。
方法:该研究包括737例患者:585例糖尿病(DM)和152例DKD。人口统计和医学特征的倾向评分匹配(PSM)确定了78例患者的子集(DM = 39,DKD = 39)。使用两个Luminex液体悬浮芯片根据分子量和浓度来检测11个尿生物标志物。The biomarkers, including cystatin C (CysC), nephrin, epidermal growth factor (EGF), kidney injury molecule-1 (KIM-1), retinol-binding protein4 (RBP4), a 1-microglobulin ( a 1-MG), b 2-microglobulin ( b 2-MG), vitamin D binding protein (VDBP), tissue在DM和DKD组中比较了金属蛋白酶-1(TIMP-1),肿瘤坏死因子受体1(TNFR-1)和肿瘤坏死因子受体-2(TNFR-2)的抑制剂。使用接收器操作特征(ROC)曲线分析评估了单个生物标志物和各种生物标志物组合的诊断值。
方法:对基因表达综合数据库中两种疾病的公开数据进行差异表达分析和加权基因相关网络分析(WGCNA),寻找与两种疾病相关的基因。利用蛋白质-蛋白质相互作用(PPI)、基因本体论和京都基因和基因组百科全书来识别与T2DM相关的MAFLD基因和潜在机制。利用机器学习算法结合12种cytoHubba算法筛选候选生物标志物,构建并评估T2DM相关MAFLD的诊断模型。采用CIBERSORT方法研究MAFLD中的免疫细胞滤过和中心基因的免疫学意义。最后,采集T2DM相关MAFLD患者、MAFLD患者和健康个体的全血,并采用高脂、高糖结合高脂细胞模型来验证中心基因的表达。
抽象的几种将血清生物标志物纳入转移性肾细胞癌的预后模型已经建立了患者的生存。生物标志物研究的临时进步突出了许多额外的血清,基因突变,遗传表达信号和组织学生物标志物,这些血清预测了临床结果和对治疗的反应。因此,我们审查了与整体,特定癌症,自由和无疾病的生存率,总体反应以及用于转移性肾细胞癌的成年人群体治疗失败率相关的生物标志物。我们回顾了人类研究报告生物标志物与临床结果之间的关联。数据是通过标准化形式抽象的,然后在适当的情况下用危险比和置信区间进行了报道,并通过生物标志物类型(血清,基因突变,遗传表达和组织学)细分。我们确定了一系列与预后和预测结果临床关联的新生物标志物。超过现代风险模型中使用的生物标志物,与预后一致的生物标志物包括CAIX,COP-NLR,CRP,S-TATI和VEGF的血清水平,BAP1,CDKN2A,CIMP/FH和TERT中的基因突变,ERV和NQO1的基因表达,以及NQO1的基因表达,以及Histolophage Inviltration和Histomolophage Invilitration and P.Caix and caix and caix and caix and caix and caix and caix and caix and caix and P.生物标志物与对靶向抗血管生成疗法的反应始终相关,包括血清CRP,MET中的突变,PBRM-1,BAP1和MTOR途径,TERT启动子突变以及PTEN和血管生成基因的表达。HERV,T-effer和免疫原性的基因表达与对免疫检查点抑制的反应改善有关。 未来的模型应纳入研究良好的生物标志物,以帮助临床医生预测转移性肾细胞癌患者的结果和治疗反应。HERV,T-effer和免疫原性的基因表达与对免疫检查点抑制的反应改善有关。未来的模型应纳入研究良好的生物标志物,以帮助临床医生预测转移性肾细胞癌患者的结果和治疗反应。
研究人员分析了Karolinska大学医院的82例患者的血液样本,患有胆囊癌。他们使用了机器学习和蛋白质组学 - 蛋白质结构和功能的最大尺度分析,以识别潜在的生物标志物。通过检查7,500种不同的蛋白质,研究人员能够鉴定651种蛋白质,这些蛋白质取决于患者是否患有癌症或炎症。,八种蛋白质表现出特别高的诊断准确性。,八种蛋白质表现出特别高的诊断准确性。
脑肿瘤和神经退行性疾病都是影响人脑的影响最普遍,毁灭性的疾病之一。尽管在过去十年中研究和临床实践方面取得了重大进展,但两种状况仍然是全球发病率和死亡率的主要因素。对它们的分子病理特征的更深入的了解是必不可少的,这不仅对于揭示这些疾病的潜在机制,而且还可以推进新型诊断生物标志物和治疗策略的发展。在神经肿瘤学领域,2021年世界卫生组织(WHO)的中枢神经系统肿瘤(CNS)分类引入了变革性变化,突出了分子诊断在CNS肿瘤分类中的关键作用。这个更新的框架具有重新确定的诊断标准,扩大了公认的肿瘤实体的范围,并重新确定了预后层次。这些进步使得更准确的诊断和个性化治疗方法,最终改善了患者的结果。同样,尽管神经退行性疾病(例如阿尔茨海默氏病)(AD)和帕金森氏病(PD)的确切病因和发病机理尚不完全了解,但最近的研究阐明了驱动疾病进展的关键分子机制。这些见解不仅提高了我们对病理学神经退行性病理学的理解,而且还揭示了有希望的治疗干预途径。我们试图突出这些动态领域内的开创性发现,新兴趋势,未解决的挑战以及未来的方向。该研究主题旨在介绍神经肿瘤和神经退行性疾病分子病理学的最新进步,目的是为其诊断,预后和治疗提供新的见解。我们的范围包括对各个维度(包括分子,细胞,结构和功能方面)的疾病发病机理的全面探索。我们还将着重于生物标志物的识别和验证以及尖端技术的发展,这些技术有望提高诊断准确性,预后精度和治疗性效率。鉴于多矩技术的不断增长(例如基因组学,转录组学,蛋白质组学,代谢组学和表观基因组学)在分子景观中的表征
CYP1A1同工酶负责将procarcinogen的生物转化,例如苯并(a)pyrene,纳入反应性化合物。同时,GSTM1通过与谷胱甘肽结合来促进这些代谢产物的排毒。CYP1A1*2A遗传变异的存在加强了这些反应性代谢物的产生,而GSTM1基因的缺失(GSTM1*0)损害了它们的排毒。这种酶促失衡会导致DNA加合物的形成,众所周知,这些加合物会为癌症和其他疾病贡献。鉴于在4P药物框架内研究这些基因的重要性(预测性,预防性,个性化和参与性),这项研究的主要目的是研究秘鲁中部沿海人口中GSTM1*0和CYP1A1*2A的普遍存在。该研究包括秘鲁城镇ICA和利马城镇的131个个人居民。结果显示GSTM1*0的频率为0.47,CYP1A1*2A的等位基因频率为0.68。CYP1A1*2A的基因型频率为6%*1A/*1A,53%*1A/*2A和41%*2a/*2a。值得注意的是,CYP1A1的人口样本不在耐寒的韦恩伯格平衡中(χ2= 5.324)。本研究中报道的GSTM1*0和CYP1A1*2A的频率与先前记录的其他拉丁美洲和三角洲人群的频率不同,可能反映了独特的