精准医疗正在创造新的机会,让我们了解疾病的基本生物学,确定新的分子靶点,并利用新兴技术支持开发针对最受益患者的创新疗法。此次会议汇集了开发精准免疫疗法的专家和利用生物标志物策略和诊断工具铺平道路的科学家,以实现精准治疗,不仅针对肿瘤学,还针对神经科学、罕见疾病等。会议结合了来自领先制药和生物技术公司的精彩演讲,以及一系列旨在推动创新和鼓励跨行业合作的互动会议,让您能够获得所需的见解和联系,从而在 2024 年及以后进一步推进公司的工作。
摘要:肺癌目前是癌症死亡的主要原因。过去十年,肺癌医学治疗取得了实质性进展,这与靶向治疗(包括免疫治疗)的出现有关。靶向治疗已逐渐从抑制肿瘤生长和进展的一般机制的药物转变为旨在改变特定肿瘤的驱动突变等机制的药物。了解肿瘤的分子特征已成为更有针对性的治疗方法的重要组成部分。肺癌生物标志物的测定面临着特殊的挑战,特别是肿瘤样本的大小通常有限。因此,液体活检在肺癌管理中尤为重要。实验室医学是肺癌多学科管理中不可或缺的一部分。临床化学和实验室医学 ( CCLM ) 在更新和传播该领域的知识方面发挥了并将继续发挥重要作用。
方法:对基因表达综合数据库中两种疾病的公开数据进行差异表达分析和加权基因相关网络分析(WGCNA),寻找与两种疾病相关的基因。利用蛋白质-蛋白质相互作用(PPI)、基因本体论和京都基因和基因组百科全书来识别与T2DM相关的MAFLD基因和潜在机制。利用机器学习算法结合12种cytoHubba算法筛选候选生物标志物,构建并评估T2DM相关MAFLD的诊断模型。采用CIBERSORT方法研究MAFLD中的免疫细胞滤过和中心基因的免疫学意义。最后,采集T2DM相关MAFLD患者、MAFLD患者和健康个体的全血,并采用高脂、高糖结合高脂细胞模型来验证中心基因的表达。
心血管疾病,这是一个全球健康问题,每年夺走许多人的生活。生活方式的变化和遗传倾向是CVD发展的关键驱动力。在许多患者中,在终点发现该疾病是唯一的治疗选择。 因此,应每次尝试在早期阶段确定风险,并采取预防措施以改善其生活质量。 生物标志物是有助于早期诊断CVD的关键因素之一。 最近发现了更多的特定和高度敏感的生物标志物,并已用于预后和诊断CVD。 目前的评论简介介绍了各种心血管生物标志物,重点是新型生物标志物,并讨论了用于CVD中不同目的的生物标志物。 生物标志物还有助于鉴定出患心血管并发症风险增加的Covid-19患者。 非侵入性使生物标志物优于评估CVD的病理生理状况的其他方法。 ©2023印度心脏病学会。 由Relx India,Pvt的一个部门Elsevier出版。 ltd. 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。在许多患者中,在终点发现该疾病是唯一的治疗选择。因此,应每次尝试在早期阶段确定风险,并采取预防措施以改善其生活质量。生物标志物是有助于早期诊断CVD的关键因素之一。最近发现了更多的特定和高度敏感的生物标志物,并已用于预后和诊断CVD。目前的评论简介介绍了各种心血管生物标志物,重点是新型生物标志物,并讨论了用于CVD中不同目的的生物标志物。生物标志物还有助于鉴定出患心血管并发症风险增加的Covid-19患者。非侵入性使生物标志物优于评估CVD的病理生理状况的其他方法。©2023印度心脏病学会。由Relx India,Pvt的一个部门Elsevier出版。ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
罗伯特·J·马戈利斯医学博士健康政策中心隶属于杜克大学,因此其教职员工和学者都尊重学术独立性的传统。杜克大学和马戈利斯中心均不持党派立场,但其成员可以自由发表意见,就重要问题发表看法。
Sucu 30,Isabella Vainieri 38,Giovanni Ostuzzi 14,Corrado Barbui 14,Christoph U. Corlell 9,39-41
结肠腺癌(COAD)是第三常见的癌症,是全球癌症死亡的第二大主要原因,这已成为全球公共卫生挑战(1)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。 开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。 近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。 因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。 细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。 ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。 临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。 最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。 ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。此外,ECM的高密度阻碍了免疫细胞的内化,这会影响肿瘤免疫疗法的作用(16-18)。因此,基于与ECM相关基因的预后模型将为预测COAD患者的复发提供基础。瘦素是瘦素基因(LEP)的糖蛋白产物。流行病学研究支持LEP与COAD风险增加有关(19)。研究表明,COAD组织中LEP mRNA的表达水平上调,这与COAD患者的预后不良有关(20,21)。周围神经形成复杂的肿瘤微环境,由多种细胞类型和因子组成,包括神经生长因子(NGF)。NGF在几种实体瘤的生长,侵袭和转移中起重要作用。Lei等。 发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。 Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Lei等。发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Hayakawa等。表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。他等人。证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床在这项研究中,我们鉴定了与WGCNA和Lasso-Cox回归相关的三个与ECM相关的基因(LEP,NGF和PCOLCE2)。
神经系统疾病包括影响中枢神经系统(CNS)和/或周围神经系统的高度复杂,多方面的疾病。它们是全球残疾和死亡率的主要原因之一,可能会损害大脑,脊髓,周围神经或神经肌肉功能(1-3)。此外,随着世界人口稳步衰老,与痴呆等衰老有关的健康状况已成为一个主要的公共卫生问题。神经退行性疾病(例如阿尔茨海默氏病)(AD)导致最普遍的与年龄相关的痴呆症,其特征是神经元死亡,认知能力下降和运动功能的丧失。神经退行性疾病中的神经元丧失归因于形成“偶然”斑块,缠结和刘易体的致病蛋白聚集体的形成和沉积,这可以自发或遗传突变引起。
阿尔茨海默氏病(AD)是痴呆症最常见的形式,影响了美国的670万人(1)。AD的定义神经病理是细胞外Aβ-Plaques和细胞内神经原纤维缠结(NFTS)。阿尔茨海默氏症协会的新指南现在建议使用基于血液的生物标志物测试作为一种更实惠,更便宜的AD诊断辅助工具(2)。Neurocode是美国华盛顿州贝灵汉的CAP认证实验室,专门研究AD流体生物标志物测试。
癌症是一种由基因突变,表观遗传变化以及与免疫微环境不断发展的相互作用驱动的多方面疾病(1)。肿瘤细胞通常会发展出逃避免疫检测并促进免疫抑制的机制(2)。尽管最近在癌症免疫疗法方面取得了突破,但可以预测治疗结果并提供更多靶向治疗的新型生物标志物和机制的鉴定仍然是一个显着的挑战(3)。肿瘤免疫联系封装了肿瘤细胞与各种免疫细胞之间的相互作用,包括T细胞,巨噬细胞,树突状细胞和天然杀伤细胞(4)。这些相互作用对于确定免疫系统识别和消除肿瘤细胞的能力至关重要。这个复杂的生态系统提供了治疗机会和挑战。