可负担的清洁能源是联合国制定的 17 个可持续发展目标中的第 7 个目标。它旨在确保人人都能获得可负担、可靠、可持续和现代化的能源。1 尽管各国发展的关键要求是获得能源,特别是电力,但联合国经济和社会事务部报告称,全世界有 7.59 亿人无法获得电力。2,3 此外,超过 85% 的人口生活在农村地区,4 农村电气化是偏远地区实现经济增长、减贫、就业和促进福利的必要条件。5 政府面临的一大挑战是向人口稀少的农村小地区输送电力。将电网扩展到这些地区有很多困难,包括财政挑战,例如电网设施和输电线路的投资成本,以及程序障碍,例如输电受限、地形崎岖、山谷高度分散等。6 – 8
摘要 随着气候危机的加剧,制冷系统引起了越来越多的研究关注。太阳能制冷是最成熟的可行解决方案之一,因为必要的冷却能量是通过利用可用的太阳辐射产生的。吸收式制冷机利用太阳热能产生冷却能量,由驱动热源(如太阳能)提供冷却能量以产生冷却功率。现有文献主要介绍小型系统(小于 50 kW c )的案例研究和模拟。所介绍的案例研究调查了单效 316 kW c 吸收式制冷机在不同可再生能源驱动热源场景(太阳能驱动、生物质驱动和混合方法)下的性能。结果表明,与生物质或太阳能作为唯一热源的场景相比,联合热发电(太阳能场和生物质锅炉串联)的性能明显更优。此外,吸收式制冷机的经济指标似乎比同容量的离心式电制冷机更具吸引力,因为投资回收期显著缩短。净现值 (NPV – 与离心式电制冷机相比,吸收式制冷机高出 75% 以上) 和投资回报率 (ROI) 值在吸收式制冷机方案中有所增加 (18.03% 对比离心式电制冷机的 15.24%)。本文描述的系统在东马其顿和希腊色雷斯运行,是最大的自给自足能源社区之一的一部分。所提出的案例研究是首次尝试对在当地能源社区运行的大型 (超过 250 kW c ) 冷却系统进行性能评估。
[3]。微藻生物量中碳水化合物的发酵是生产生物燃料的替代途径,尤其是因为某些微藻物种的淀粉,葡萄糖和/或纤维素在干重的基础上超过50%,没有木质素含量[4,5]。已经开发出各种方法将藻类生物量碳水化合物水解成可发酵的化合物[2,6,7]。尽管碳水化合物占干重的40%或更高的微藻生物量,但藻类水解物通常含有低糖浓度。例如,使用H 2 SO 4对小球藻生物量的水解产生了15 g/L的可发酵糖[8]。因此,对糖浓度相对较低的水解物必须有效,以实现高产量,糖转化率和生产力。具有游离细胞的传统发酵在可以实现的糖转换的体积生产率和程度上受到限制。批处理发酵的糖转化率很高,但体积生产力较低,尤其是当考虑排水,清洁和填充生物参与者的时间时。饲料批次发酵可以提高生产率,但仅适用于具有高糖浓度的原料,而生物质水解物并非总是可能的。最后,与游离细胞的连续培养的体积产生性受到生物催化剂的特异性生长速率的限制,尤其是对于糖浓度较低的水解产物。当使用游离细胞时,连续培养中的糖含量也很低。由于细胞保留在反应堆内,与生长速率的解耦操作相比,固定的细胞技术具有比使用自由细胞的固定型生产率明显更高的体积生产率[9,10]。细胞固定还可以促进其他策略,以提高糖至产品转化的产量(碳转化效率)以及下游加工的成本较低[11]。不合理的酵母细胞。
欧盟委员会已根据《巴黎协定》宣布了一项“欧洲绿色协议”,以脱碳并增加可再生能源。这项研究研究了具有生物质燃料的热量和电力的地区供暖系统,电力驱动的压缩热泵和坑热能储藏,可以在未来的瑞典电力系统中有助于电力平衡能力,并具有可变可变的可再生电力生产的较高份额。地区的热量生产在不常规的控制上主要是为了提供电力平衡需求,如果不直接提供给地区供暖用户,则将共同产生的热量存储。还研究了这对生物质需求的影响。模拟是在瑞典电力市场的一部分的汇总水平上进行的。结果表明,地区供暖系统有可能将可变峰值可再生能力降低多达52%。所有功率盈余都可以用于热泵中的热量产生。需要供热需求的17 E的供热能力。根据可再生能源发电技术的组合,与常规的热量产生相比,控制功率平衡的地区供暖生产的燃料使用率高11%。例如,与相反的关系相比,与风能相关的太阳能相对于风能减少了燃料的使用程度。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
虽然生物质废弃物数量庞大,但这些材料及其生产过程通常对环境友好、成本低、无害且易于扩展。这些优势使生物质材料成为解决环境污染问题的绝佳选择,主要是通过替代可持续性较差的同类材料。这也适用于电池等储能系统,其中多个组件对环境影响很大。在此背景下,为了应对日益增长的能源需求,人们对锂硫电池进行了广泛的研究,预计其商业化程度将不断提高。具体而言,近年来,锂硫电池可再生正极材料的使用取得了进展,这一领域得到了广泛的关注,其中对从生物质中获得的碳质材料 (C) 和/或活性炭 (AC) 进行了深入研究。本文通过对来自天然废物的碳质材料进行分类和讨论,根据生物质的类型对这一领域进行了回顾:(1)木本植物,(2)草本植物和农业,(3)水生植物,(4)动物和人类,以及(5)受污染和工业生物质废料。此外,还对所有用作硫载体的多孔碳或活性炭的来源、合成参数、物理性质以及锂硫电池中的电化学性能进行了详尽的评估。目的是对从生物质资源中制备碳的进展进行一般性描述,重点研究这些材料的结构和电化学性质(重点是过去十年),并对这一发展领域的未来研究进行展望。
GreenChar 是使用 SyngaSmart 技术生产的生物炭的名称,其特点是孔隙率高、碳浓度高。生物炭不仅代表了再生农业的有前途的工具,也是来自大气 CO2 的碳的浓缩物:生产和使用生物炭可以在农业用地上创建“工程”碳汇,其碳吸收效果与植树相同。然而,生物炭的优点之一是其碳含量稳定,不会与氧气发生反应,因此不会分解。这解释了为什么生物炭具有将大气中的碳锁定数个世纪的独特潜力,并且是仅有的三种已知安全且经济有效的碳吸收方法之一(土壤碳和碳林业)。政府间气候变化专门委员会 (IPCC) 也证实了这一点,该委员会在 2018 年 10 月 8 日发布的一份特别报告中首次将生物炭列为有前途的负排放技术 (NET)。