背景和目标:玉米和水稻种植区有大量生物质废弃物未得到充分利用。在中爪哇省的格罗博根,稻壳和玉米废弃物被用作豆腐生产的能源,从而形成稻壳炭和玉米芯炭。因此,开发创新方法将稻壳和烧玉米芯废弃物转化为有经济价值的产品至关重要。本研究旨在通过分析生物质废弃物(特别是玉米芯、烧玉米芯、烧稻壳和聚丙烯废弃物)的化学特性及其相关的环境影响,确定其理想的团块混合物。方法:选择此实验设计来确定生产高质量团块的最佳材料组合。在这个设计中,材料组合是自变量,而化学特性是因变量。本研究选择的因变量来自印度尼西亚国家标准规定的参数,包括水分含量、热值、灰分和固定碳的测量。进行了生命周期评估以评估所生产的蜂窝煤产品对环境的影响。结果:研究结果表明,根据印度尼西亚国家标准参数,玉米芯蜂窝煤的质量优于烧稻壳蜂窝煤。与回收有关的生命周期评估表明,玉米芯蜂窝煤对环境的影响较小。研究表明,在生产过程中不使用塑料的玉米芯蜂窝煤具有优异的化学性能和更有利的环境影响。不含聚丙烯的玉米芯水分含量为 11.16%,灰分含量为 20.04%,固定碳含量为 77.44%,热值为每克 5,156.93 卡路里。环境影响相当于 0.387 美元的生态成本。研究结果表明,玉米芯团块具有作为替代能源或与化石燃料在混烧过程中结合的巨大潜力。结论:研究结果将有助于地方政府指导生产符合消费者质量标准的生物质团块,同时最大限度地减少环境影响。有必要进一步研究,以分析在工业应用中,特别是在格罗博根县的水泥行业中,使用团块替代化石能源或与化石燃料结合使用时遇到的障碍和挑战。
这是一篇在接受后经过改进的文章的 PDF 文件,例如添加了封面和元数据,以及格式化以提高可读性,但它还不是最终的记录版本。此版本在以最终形式发布之前将经过额外的文字编辑、排版和审查,但我们提供此版本是为了让文章尽早可见。请注意,在制作过程中,可能会发现可能影响内容的错误,并且适用于期刊的所有法律免责声明均适用。
24合并版本:欧洲议会的指令2003/87/EC 2003年10月13日的理事会建立了一个在工会内建立温室气体排放津贴和修订理事会指令96/61/EC,OJ L 275,OJ L 275,2003年10月25日,2003年10月25日,第14条,委员会及其委员会(EU MONIPERING of MONIPERING of MONIPERING of GREENERING of GREEN HORIPENTING 2018 ANDERING of GREEN HOLITHENTING 2018 ANFORINGING)2018年2018年12月20日。根据欧洲议会的2003/87/EC指令的排放,安理会和修订委员会法规(EU)第601/2012号,OJ L 334,2018年12月31日,第38.5条。2018/2066的委员会实施法规(EU)的改编版本在2022年被能源社区部长委员会采用,并于2023年12月31日进行了换位截止日期。
与此类陈述所表示或暗示的任何未来结果,表现或成就有实质性不同。诸如“期望”,“预期”,“项目”,“打算”,“计划”,“意志”,“信仰”,“ seks”,“估计”,“估计”,“应该”,“应该”,“可能”,“可能”,“可以”,以及类似的表达方式,旨在识别出这种前瞻性的语言。这些陈述是基于管理层当前的期望和信念,实际事件或结果可能会有实质性差异。有许多因素可能导致这种前瞻性陈述所表达或暗示的实际事件或结果与此类陈述所表示或暗示的任何未来结果有实质性不同。前瞻性陈述基于当前的期望,ARBIOS没有义务更新此类信息以反映以后的事件或发展,除非法律要求。
关键词:BECCS,生命周期评估,生物质技术净2零博士培训中心EPSRC和BBSRC净零零发射技术博士培训中心(2个净2零)是诺丁汉大学(Quep)贝尔福斯特大学贝尔法斯特大学和大学的阿斯顿大学(net 2 Zero)的平等伙伴关系。通过削减边缘研究和跨学科的合作,该CDT旨在应对与气候变化和可持续性有关的全球挑战。我们的四年博士课程正在培训下一代的研究领导者,这些研究领导者负责从环境中清除温室气体。净2零中的CDT专注于使用生物质来代替大气中的化石燃料和CO 2的去除(或捕获),并有可能创建新的燃料和化学物质来源。该中心的专业知识涵盖了直接空气捕获和CO 2存储(DACC),CO 2利用率,生物炭合成和利用,生物质过渡到材料和化学物质,以及使用碳捕获和存储(BECC)等能量的生物量等。通过我们的研究培训计划,您将能够
全球能源环境正在发生变革性的转变,因为各国努力减少对化石燃料的依赖并减轻气候变化的影响。到2050年,欧盟致力于实现零排放的承诺,这促使人们对可再生气体的兴趣,这是其更广泛的脱碳战略的一部分。在各种可再生能源技术中,气体已成为一种有前途的解决方案,为将有机材料转化为清洁能源提供了多功能方法。欧洲沼气协会(EBA)起草了一篇论文,探讨了欧洲生物质和废气的状态。第1章包括关于气体在未来能源系统中的作用的讨论,重点是推动其部署的相关政策。第2章介绍了该领域的关键技术方面的介绍,例如原料预处理,气体操作参数和最先进的技术。第3章总结了将气体燃料转换为各种最终产物的合成的升级途径,以及对生物炭的价值的讨论,这是产品通过产品的气体化。此外,已经绘制了欧洲运营和计划的气体装置,并在第4章中分析了主要趋势。第5章介绍了影响气体发展部门的市场和经济考虑因素,重点是技术经济方面。促进可再生能源,生物量项目的财务激励措施和旨在减少温室气体排放的监管框架对于促进对气体技术技术的投资至关重要。随着技术的进步和市场状况的发展,生物量和废物气体可能在向可持续能源解决方案过渡方面起着不可或缺的作用,同时减轻与化石燃料消耗相关的环境影响。
基于生物的塑料,主要是多羟基烷烃(PHAS),为石油衍生的塑料提供了充满希望的替代品。第三代(3G;微藻/蓝细菌)生物量由于生物量快速生产力和代谢多功能性而变得非常重要。微藻可以通过利用CO 2和废水来产生PHA,并将它们确定为生物塑性生产的高度有希望和环保系统。这项全面的综述提供了对微藻-PHA生产的全面见解,从对物理和文化条件的优化到有效的PHA纯化过程。批判性审查还研究了培养策略,代谢工程和生物反应器发展方面的最新进步,这可能会导致更可持续和渐进的基于微藻的生物塑料积累。已经解决了藻类生物量产生通过综合废水处理的PHA积累的有效性。本综述研究了数学建模和新兴人工智能在推进基于藻类的PHA生产过程中的作用。最后,审查以讨论经济和社会挑战,生命周期分析以及先进微藻衍生的生物塑料生产的研究和开发前景的讨论结束,并在工业规模上预测了对经济上可行和可持续的基于微藻的PHA生产的潜在解决方案的预测。
Orest生态系统在全球范围内因其在陆地碳动态中的关键作用而闻名,为人类提供了宝贵的服务,并充当了重要的碳汇(Bonan,2008; Pan等,2011)。自工业革命开始以来,急剧的气候变化主要归因于人类活动升级温室气体排放,尤其是二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)。在其中,CO 2是主要的贡献者,其大气浓度自从工业前时代以来显着增加(Forster等,2007)。根据国家海洋和大气管理局(NOAA)的最新数据,CO 2级别达到了前所未有的高点,越过百万分之421份(PPM),表明迫切需要了解和增强碳固执过程(NOAA,2022)。
余乳,目的是在商业上相关的25 mW th的商业相关规模上证明BTG生物化的快速热解技术。的准备工作已于2009年开始,但是热解油厂的实际建设刚刚开始于2014年初,第一个热解油于2015年3月生产。富有粉状植物设计用于喂养木本生物量,尤其是木质碎片和罚款 - 荷兰的颗粒处理和储存的副产品。此原料几乎不需要进一步的预处理。粒径已经适用于喂食热解过程,而水分含量略高于10 wt%。已经安装了一个相对较小的干衣机,将原料干燥至5 wt%的水分含量。
3方法论9 3.1研究框架。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 3.2过程描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.3工业规模的方案研究。。。。。。。。。。。。。。。。。。。。。。。。。。14 3.3.1关键假设。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 3.3.2过程布局。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 3.4技术经济评估。。。。。。。。。。。。。。。。。。。。。。。。。。。17 3.4.1资本成本估算。。。。。。。。。。。。。。。。。。。。。。。。。。。17 3.4.2运营成本估计。。。。。。。。。。。。。。。。。。。。。。。。。。19 3.4.3经济指标。。。。。。。。。。。。。。。。。。。。。。。。。。。19