GreenChar 是使用 SyngaSmart 技术生产的生物炭的名称,其特点是孔隙率高、碳浓度高。生物炭不仅代表了再生农业的有前途的工具,也是来自大气 CO2 的碳的浓缩物:生产和使用生物炭可以在农业用地上创建“工程”碳汇,其碳吸收效果与植树相同。然而,生物炭的优点之一是其碳含量稳定,不会与氧气发生反应,因此不会分解。这解释了为什么生物炭具有将大气中的碳锁定数个世纪的独特潜力,并且是仅有的三种已知安全且经济有效的碳吸收方法之一(土壤碳和碳林业)。政府间气候变化专门委员会 (IPCC) 也证实了这一点,该委员会在 2018 年 10 月 8 日发布的一份特别报告中首次将生物炭列为有前途的负排放技术 (NET)。
污染气候 - 生物量目前与太阳能和风一起归类为“可再生”能源,但现实是,生物质能量与化石燃料有更多共同点。像煤炭和石油一样,生物质是一种燃烧二氧化碳并导致气候危机的能源生产形式。实际上,生物质发电厂是加利福尼亚最脏的电源 - 在烟囱中释放的碳多于煤炭。增加了这些危害,切割树木以降低了森林隔离和存储碳的能力。总的来说,生物质能力是气候的双重打击:它在烟囱中排放了更多的碳,并在森林中留下的碳更少。对社区的污染 - 生物质发电厂也是空气污染物的重要来源,损害了生物量设施所在的脆弱社区并加剧了环境不公的恶化。无效 - 在这种工具中通常会促进生物量能量作为一种工具,以激励大规模的树木砍伐(“稀疏”),认为这将在野火期间保护社区和森林。但是,这种方法在保护房屋和社区方面无效,这是通过以家庭为中心的火力安全策略来实现的,该战略可以帮助社区安全地与不可避免的野火共存。尽管B IOMASS能源被推广为从森林稀疏项目中处置碎屑堆的一种手段,但最终是通过商业伐木的木材磨坊残留物,最终得到了补贴。同时,生物量提取对森林造成重大生态损害。上次更新:2021年3月。昂贵 - 使用森林生物量发电的效率低下,使其尤其昂贵。实际上,生物质功率是加利福尼亚最昂贵的能源。生物质发电厂在很大程度上依靠纳税人和纳税人支付的监管激励措施和补贴。这些生物质补贴消耗的资源将更好地用于更便宜,真正清洁的太阳能和风能替代品及其创造的工作。在此概述的事实表中解释和支持了这些要点。经过仔细检查,很明显,生物质能量不是解决方案,实际上会阻碍加利福尼亚建立真正清洁能源经济的能力,同时危及加利福尼亚人。国家可能倾注的资源可以更好地利用真正清洁的太阳能和风能,以保护加利福尼亚人,我们的健康,我们的森林以及我们的气候到未来。有关更多信息,请通过生物多样性中心联系Shaye Wolf和Brian Nowicki:swolf@biologicaldiversity.org和bnowicki@biologicaldiversity.org。
估算森林生物量(以下简称生物量)对于可持续森林管理和更好地了解各种森林生态系统在全球碳循环中的贡献至关重要。空间连续的森林生物量图是气候缓解战略的关键输入之一。地上生物量 (AGB) 被定义为“树木或灌木(木本)生命形式的地上活体或死体干物质,以单位面积质量表示,通常为 Mg ha-1”(Duncanson 等人,2021 年)。具体而言,AGB 估计值用于确定森林中碳储存的增量或减少量,最常见的是在将 AGB 转换为 0.5 倍(即干物质中碳含量为 50%)或根据木本物种类别更准确地转换时(Martin 等人,2011 年,Petersson 等人,2012 年)。
Orest生态系统在全球范围内因其在陆地碳动态中的关键作用而闻名,为人类提供了宝贵的服务,并充当了重要的碳汇(Bonan,2008; Pan等,2011)。自工业革命开始以来,急剧的气候变化主要归因于人类活动升级温室气体排放,尤其是二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)。在其中,CO 2是主要的贡献者,其大气浓度自从工业前时代以来显着增加(Forster等,2007)。根据国家海洋和大气管理局(NOAA)的最新数据,CO 2级别达到了前所未有的高点,越过百万分之421份(PPM),表明迫切需要了解和增强碳固执过程(NOAA,2022)。
这项工作研究了木质纤维素材料中生物乙醇的生产,旨在讨论生物技术和发酵的当前状态和未来前景。讨论了生物质发酵过程的关键方面,包括原材料选择,微生物选择和改进,预处理过程,水解过程,发酵过程和乙醇纯化。该研究的重点是改善各种过程,废物处理和市场状况。特别注意发酵参数的优化,例如温度,pH,营养浓度,氧气需求和搅动速度,这对于最大化的产量和效率至关重要。通过分析这些参数及其对发酵过程的影响,本研究旨在对生物量发酵技术的未来前景进行全面的分析,从而强调潜在的进步及其对可持续生物乙醇生产的影响。这项工作还承认了重大挑战,例如大规模生物质发酵的生存能力,这些挑战通常受到高资本成本,与生物质供应相关的复杂物流以及与食品作物的原料竞争的限制。此外,技术挑战,例如有效的生物量降解以及发酵过程集成到现有的工业基础设施中。
生物质能(生物能源)在实现1.5°C的气候目标中起着至关重要的作用,因为它有可能将化石燃料代替发电。随后,生物能源是从作物残基和动物粪便中回收和再利用废物的最有效方法之一,使其在过渡到可再生能源混合物方面至关重要。从2020年开始,生物能量为全球主要能源供应贡献了9.5%,其中来自:(i)包括农业废物和市政固体废物在内的固体生物量(43%),(ii)传统的生物量,其中包括农作物残留物,柴火和植物,柴火和肥料(39%),以及(iii)Biogas and Biofer ofereel sothods bio,bioets bioo,bioo,bioo,bioets bio,bioets bio, (18%)。到2030年,总体生物量供应预计将增加 +55%至86埃克索尔(EJ),到2050年最高可达135EJ,这表明增加了将废物作为可持续性目标的一部分的需求。
具有碳捕获和存储(BECC)的生物能源(BECC)是一种解决气候变化,区域野火和循环经济的潜在解决方案。这项研究通过开发一个框架,通过开发一个将过程模拟,技术经济分析(TEA)和生命周期评估(LCA)(LCA)(LCA)整合到美国西部的气化森林残留物,调查了氢11在氢11中实施碳捕获(CC)的经济和10个环境性能。13结果表明,与基于化石的氢相比,森林残基衍生的氢在经济上具有竞争力(1.52– 2.92/kg 14 H 2)。合并CC会增加由于额外的能源和化学消耗而导致的15造成的环境影响,这可以通过能源自我16足够的设计来减轻,这也将CC的成本降低到$ 75/tonthneco₂$ 75/吨的Co₂,即2,000个干吨短吨/第17天工厂,或使用可再生能源(例如太阳能和风)。与CC的电解和基于化石的18条途径相比,只有BECC可以提供碳阴性氢,并且在人类健康影响和近期经济学方面更为有利。20
1 Laboratoire Lasie,UMR-CRS 7356,La Rochelle UniversityÉ,Avenue MichelCréPeau大街,法国La Rochelle,17042; maria.el_hage@univ-lr.fr(M.E.H. ); sarezzo@univ-lr.fr(S.-A.R. ); zoulikha.rezzo@univ-lr.fr(Z.M.-R。)2分析中心等,de recherche,Unitèrecherche Technologies和Valorisation Agro-orimentaire,学院,大学是Saint-Joseph de Beylrouth,Saint-Joseph de Beyrouth,RIAD EL SOLH,RIAD EL SOLH,RIAD EL SOLH,P.O.,P.O. 框17-5208,贝鲁特1104 2020,黎巴嫩; nicolas.louka@usj.edu.lb 3 Laboratoire Lienss,UMR-CRS 7266,Rochelle Universityé,Avenue Michelcrépeeu,17042年,法国La Rochelle; thierry.mauugard@univ-lr.fr(T.M. ); Sophie.sable@univ-Lr.fr (S.S.) 4 Universit é de Technologie de Compare è Gne, Escom, Timr (Integrated Transformations of Renewable Matter), Center de Recherche Royallieu, CS 60319, 60203 COME è GNE CEDEX, France 5 Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. 盒子100 ,黎波里 1300,黎巴嫩; esperance.debs@balamand.edu.lb *通信:m.koubaa@escom.fr;电话。 : +33-3-44-23-88-41); sarezzo@univ-lr.fr(S.-A.R.); zoulikha.rezzo@univ-lr.fr(Z.M.-R。)2分析中心等,de recherche,Unitèrecherche Technologies和Valorisation Agro-orimentaire,学院,大学是Saint-Joseph de Beylrouth,Saint-Joseph de Beyrouth,RIAD EL SOLH,RIAD EL SOLH,RIAD EL SOLH,P.O.,P.O.框17-5208,贝鲁特1104 2020,黎巴嫩; nicolas.louka@usj.edu.lb 3 Laboratoire Lienss,UMR-CRS 7266,Rochelle Universityé,Avenue Michelcrépeeu,17042年,法国La Rochelle; thierry.mauugard@univ-lr.fr(T.M.); Sophie.sable@univ-Lr.fr (S.S.) 4 Universit é de Technologie de Compare è Gne, Escom, Timr (Integrated Transformations of Renewable Matter), Center de Recherche Royallieu, CS 60319, 60203 COME è GNE CEDEX, France 5 Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O.盒子100 ,黎波里 1300,黎巴嫩; esperance.debs@balamand.edu.lb *通信:m.koubaa@escom.fr;电话。: +33-3-44-23-88-41
挑战范围。热泵提供的热量尚不清楚。NGO视图:应为60%,PAC在2050年最多显示90%。响应:情景故事情节本质上是定性的。但是,对于TNYDP 2022故事情节,我们为关键参数提供了一些定量范围,以更好地说明故事情节之间的差异。我们承认,定量信息仍然相当有限。这是由于在故事情节级别尚未获得完整的能量量化的事实。随着我们在场景建设活动中的进一步进行,我们还将能够提供更详细的信息。将在今年晚些时候发布的《情景报告》草案报告中包含全部能源量化的特定信息。6。反馈:有关HP类型,数量,电阻加热
