摘要在生物伦理学领域,科学文章已经发表,并强调了有关类器官的创建和使用的相对多元主义的反思。这种多数性,而不是简单地反映主题的复杂性,也可能是应用多个理论和实用框架的结果。此外,生物医学研究和医疗保健中器官的创建和使用可能还处于起步阶段。这种现象可能会增加幅度。生物伦理学可能能够为其提供有效且相关的道德含义,前提是并行形成了名副其实的伦理反射,即对生物伦理学本身的反思,以便为科学家和临床医生提供最佳的日常实践帮助。
由乳酸杆菌降低引起的常见状况是细菌性阴道病,通常使用有限的疗效的靶向抗生素进行治疗,症状是60%,症状浮出水面。阴道实时生物治疗产品,使用实时微生物的FDA批准的治疗方法可能比现有治疗方案更有效地治疗或预防这些与阴道相关的健康状况。
了解土壤特性和微生物群落如何对农作物旋转的反应对于农业生态系统的可持续性至关重要。然而,关于农作物旋转如何改变地下微生物群落在喀斯特农业系统内有严重细菌的土壤中如何改变地下微生物群落的研究有限。这项研究调查了玉米,烟草和烟草 - 玉米旋转对中国西南部喀斯特地区土壤微生物群落的连续种植的影响。高通量测序用于评估土壤微生物群落结构对作物单栽培和旋转模式的反应。正如预期的那样,烟草旋转减轻了连续种植和降低土壤酸化的负面影响。烟草旋转也显着改变了微生物群落的组成,并通过促进了较高的有益微生物来促进植物的生长。主要细菌属鞘虫和盖氏菌,以及主要的真菌属植物和saitozyma被确定为对土壤生态系统健康至关重要的判别生物标志物。pH,可用的钾(AK)和可用的磷(AP)是与土壤微生物组组装有关的主要土壤因子。这项研究旨在证明农作物旋转与微生物组之间的关联,表明改变培养方式可以增强谷商的农业系统。
1里昂大学,克劳德·伯纳德·里昂1大学,Vetagro SUP,UMR Ecologie Microbien,CNRS 5557,INRA 1418,69280 Marcy L'Etoile,法国; 2里昂大学,Insa Lyon,UMR Environnement,City,Société,CNRS 5600,18 Rue Chevreul,69362法国里昂; ; 3里昂大学,UMR Triangle,CNRS 5206 Jean Monnet Saint Etienne,6 Rue Basse des Rives,42023 Saint-Etienne,法国; 4里昂大学,Insa Lyon,Deep,EA7429,11 Rue de La Gysique,69621法国Villeurbanne; 5里昂大学,UMR Gate,CNRS 5824,LumièreLyon University 2,93 Chemin des Mouilles,69131 Ecully,法国,
微生物组研究是生命科学中增长的数据驱动的领域。存在共享微生物组序列数据并使用标准化元数据方案的策略,但研究人员之间的依从性各不相同。为了促进微生物组研究界的开放研究数据最佳实践,我们(1)提出了两个分层的徽章系统来评估数据/元数据共享依从性,(2)展示了一种自动化评估工具,以确定与Amplicon和Metagenome序列数据出版物中数据报告的依从性。在跨越人类肠道微生物组研究的出版物(n〜3000)的系统评估中,我们发现近一半的出版物不符合序列数据可用性的最低标准。此外,元数据的标准化差为统一和跨研究比较创造了很高的障碍。使用此徽章系统和评估工具,我们的概念验证工作暴露了(i)序列数据可用性语句的无效性,以及(ii)缺乏用于注释微生物数据的一致的元数据标准。从这个角度来看,我们强调了改进实践和基础设施的需求,以减少数据提交的障碍并最大程度地提高微生物组研究中的可重复性。我们预计我们的分层徽章框架将促进有关数据共享实践的对话,并促进微生物组的数据再利用,支持使微生物组数据公平的最佳实践。
*地址为:jgordon@wustl.edu。作者贡献O.D-B。和J.I.G.设计了gnotobiotic小鼠研究。A.C.H. 监督了肥胖人类供体的粪便样品,用于殖民无菌小鼠。 O.D-B。 和N.H.进行了动物研究。 M.J.B.,S.K.,O.D-B。 和J.I.G. 与D.K.H.一起设计了人类研究。和S.V. 谁监督了两种人类研究中使用的纤维零食原型的设计,制造和质量控制分析。 a.m.和S.V. 纤维制剂的有组织的碳水化合物和糖苷连接组成分析。 S.K.监督人类参与者的受控饮食研究。 与K.K.一起 和T.W. J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。A.C.H.监督了肥胖人类供体的粪便样品,用于殖民无菌小鼠。O.D-B。 和N.H.进行了动物研究。 M.J.B.,S.K.,O.D-B。 和J.I.G. 与D.K.H.一起设计了人类研究。和S.V. 谁监督了两种人类研究中使用的纤维零食原型的设计,制造和质量控制分析。 a.m.和S.V. 纤维制剂的有组织的碳水化合物和糖苷连接组成分析。 S.K.监督人类参与者的受控饮食研究。 与K.K.一起 和T.W. J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。O.D-B。和N.H.进行了动物研究。M.J.B.,S.K.,O.D-B。 和J.I.G. 与D.K.H.一起设计了人类研究。和S.V. 谁监督了两种人类研究中使用的纤维零食原型的设计,制造和质量控制分析。 a.m.和S.V. 纤维制剂的有组织的碳水化合物和糖苷连接组成分析。 S.K.监督人类参与者的受控饮食研究。 与K.K.一起 和T.W. J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。M.J.B.,S.K.,O.D-B。和J.I.G.与D.K.H.一起设计了人类研究。和S.V.谁监督了两种人类研究中使用的纤维零食原型的设计,制造和质量控制分析。a.m.和S.V.纤维制剂的有组织的碳水化合物和糖苷连接组成分析。S.K.监督人类参与者的受控饮食研究。 与K.K.一起 和T.W. J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。受控饮食研究。与K.K.一起和T.W.J.J.C.,G.C。和C.B.L. 对小鼠饮食和粪便样品进行了质谱测定。 J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。 O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。J.J.C.,G.C。和C.B.L.对小鼠饮食和粪便样品进行了质谱测定。J.C.对从食用2个含有零食的2个和4纤维的参与者那里收集的人类粪便样品进行了LC-QTOF-MS分析。O.D-B。 监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。 M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。O.D-B。监督了小鼠和人类生物测量的存档和处理,并从这些样品中生成了16S rDNA和shot弹枪测序数据集。M.C.H. 和C.D. 实现了宏基因组装/注释管道。 D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。M.C.H.和C.D.实现了宏基因组装/注释管道。D.A.R.,S.A.L。和A.O. 进行了粪便微生物的McSeed途径重建,而V.L. 和B.H. 提供了cazyme注释。 A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。D.A.R.,S.A.L。和A.O.进行了粪便微生物的McSeed途径重建,而V.L.和B.H.提供了cazyme注释。A.S.R. 开发了HOSVD和R.Y.C. O.D-B。 和R.A.B. 分析了数据。A.S.R.开发了HOSVD和R.Y.C.O.D-B。 和R.A.B. 分析了数据。O.D-B。和R.A.B.分析了数据。应用于由小鼠和人类生成的数据集的CC-SVD分析平台。对人类研究产生的血浆蛋白质组数据集进行了COMPBIO分析。o.d-b。,C.D.,M.J.B。和J.I.G.O.D-B。 和J.I.G. 在合着者提供的协助下写了这篇论文。O.D-B。和J.I.G.在合着者提供的协助下写了这篇论文。
1行为神经科学计划心理学系密歇根州立大学东兰辛,密歇根州48824美国2美国药理学医学院国家和卡普迪斯特里大学雅典Mikras Asias 75 11527,雅典Goudi,雅典,雅典,希腊。3医学院国家和卡普迪斯特里大学雅典大学的第一届精神病学系4 Univ Rennes,Inserm,Ehesp,Ehesp,Irset(Irset Institut de Recherche enSanté,Environnement et travail),F-35000,Rennes,Rennes,France *应向谁致辞:lonstein@mmsu.edun@mmsu
基因对我们对生物学的理解至关重要,诸如基因组学和基因组编辑之类的现代进步一直保持遗传学为一个充满活力,多样和快速发展的领域。在该领域需要高质量的开放访问期刊,基因团队旨在在整个遗传学学科中提供专家手稿处理,认真的同行评审和快速发表。从2010年开始,该期刊现在已得到充分确认和认可。为什么不考虑下一篇遗传学纸的基因?
抑郁症是一种高度普遍且异质性的疾病,通常以对抗抑郁剂治疗的反应可变。最近的研究强调了肠道轴是精神病的关键调节剂,强调了微生物群对神经递质合成,免疫调节和全身炎症的影响。证据表明,肠道营养不良有助于治疗耐药性,而特定的细菌菌株(例如乳酸杆菌和双歧杆菌)会增强抗抑郁药疗效。相反,致病物种促进神经炎症,损害药物反应。微生物组引导的抗抑郁治疗的新兴概念为优化精神疗法提供了一种精确的医学方法。宏基因组学,代谢组学和人工智能的进步促进了个性化的治疗策略,Incorpo评级益生菌,益生元和粪便微生物群移植(FMT)作为常规药物治疗的辅助手段。研究表明,微生物组的调节可能会增强5-羟色胺的可用性,减少全身性炎症并改善抗抑郁剂预后,尤其是在耐治疗抑郁症中。尽管有很有希望的发现,但关于长期影响,最佳微生物干预措施和个性化治疗方案仍然存在几个差距。此外,年龄,性别,饮食和昼夜节律影响了微生物群的位置,需要进行量身定制的干预措施。
© 作者 2023。开放存取本文采用知识共享署名 4.0 国际许可协议,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可协议中,除非在材料的鸣谢中另有说明。如果材料未包含在文章的知识共享许可协议中,并且您的预期用途不被法律规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。