在天然聚合物中,壳聚糖作为化疗药物的药物输送系统引起了人们的特别关注 (7)。壳聚糖源自几丁质的脱乙酰化过程,是一种用途广泛的氨基多糖聚合物,大量存在于节肢动物的外骨骼和真菌的细胞壁中。其独特的属性,包括高载药量、持续循环、多功能性、在肿瘤部位精确释放药物、减轻对健康细胞的毒性、良好的靶向能力、生物相容性、生物降解性、抗菌和抗肿瘤特性以及细胞膜通透性,使其成为一种有吸引力的选择 (8)。化学改性的壳聚糖衍生物已显示出令人鼓舞的结果,可有效输送治疗剂,同时减少副作用。此外,壳聚糖在肿瘤部位的积累可以增强对癌细胞的免疫反应,并阻止肿瘤的生长和扩散。因此,由于具有抗肿瘤和止血活性且毒性极小,壳聚糖被认为是一种安全且生物相容的生物医学应用工具。壳聚糖的活性氨基易于与功能团连接,增强了其作为生物聚合物的多功能性 (7)。
Porto 7抽象的生物聚合物具有巨大的适用性,除了与化石能源相比,还具有可生物降解的来源和相对较短的寿命。其中一些生物聚合物是多羟基烷酸酯(PHAS),这是一类具有形成塑料膜的聚合物,类似于石化塑料。几项研究表明,微藻/蓝细菌是光合微生物的类型,可用于以较低的成本获取PHA,因为它们对生长的营养需求最少,并且自然是光自养生的,这意味着它们使用光和CO 2作为主要能源。此外,微藻具有高生产率的潜力,对环境条件的变化具有耐受性,并且可以在不适合农业的地区种植。这些光合微生物产生的这些PHA塑料膜可以是构建具有抗菌特性的功能性膜的替代方法,该膜与精油(著名的活性包装,包装行业的未来)一起融合在一起。这项工作展示了这些生物聚合物在包装行业中的生产,提取,生物合成和应用观点,例如与精油合并的薄膜。关键词:微藻,蓝细菌,生物塑料,生物聚合物,多羟基烷烃,精油。
荧光寿命成像显微镜(FLIM)是区分荧光分子或探测其纳米级环境的强大工具。传统上,FLIM使用时间相关的单光子计数(TCSPC),由于其对点检测器的依赖,因此精确但本质上的低通量。尽管时间门控摄像机已经证明了具有致密标记的明亮样品中高通量FLIM的潜力,但尚未广泛探索它们在单分子显微镜中的使用。在这里,我们报告了使用商业时间门控的单光子摄像头快速准确的单分子flim。我们优化的采集方案以仅比TCSPC少三倍的精度实现单分子寿命测量,同时允许同时进行超过3000个分子的多种多样。使用这种方法,我们证明了在受支持的脂质双层上的大量标记的孔形成蛋白以及在5-25 Hz处的多重时间单分子恢复能量传递测量值的平行寿命测量。此方法具有前进的多目标单分子定位显微镜和生物聚合物测序的有力希望。
介绍了在惰性气氛下通过扫描隧道显微镜 (STM) 沉积和成像分子的方法和装置。评估了三种应用分子的方法:气相平衡吸附、升华和电喷涂。利用这些方法,各种有机和生物聚合物分子可以沉积在石墨和在云母上外延生长的金 (111) 上并成像。与使用高真空设备或手套箱等替代方案相比,这些程序具有一些重要优势:它们便宜、方便、更快捷。当将巯基乙醇、乙醇胺、乙醇、乙酸和水以蒸汽形式引入扫描室时,它们会在金基底上产生二维晶体吸附层。据推测,这些吸附层涉及分子与表面形成的金氧化物之间的氢键合。将蛋白质溶液电喷雾到金表面可获得单个蛋白质分子的图像,其横向尺寸接近 X 射线分析测量的尺寸,厚度为 0.6-1.3 纳米。对于金属硫蛋白,可以重现观察到已知的分子内部结构域。在所检查的其他示例中,无法解析详细的内部结构。
摘要:定期间隔短的短膜重复(CRISPR)和相关的CAS核酸酶(CAS9)是一种尖端的基因组编辑技术,它通过使用短RNA分子来指定靶向DNA序列,通过使用短RNA分子,帮助内核酶Cas9在负责遗传性疾病的基因修复中的核酸内切酶Cas9。但是,应用此技术的主要问题是开发有效的CRISPR/CAS9传递系统。共识依赖于用纳米颗粒(NP)代表的非病毒输送系统的使用。壳聚糖是一种安全的生物聚合物,用于几种生物医学应用,尤其是基因递送的NP。的确,它在基因递送系统的背景下显示了几个优点,例如,其骨架上有带正电荷的氨基组的存在可以与带负电荷的核酸形成稳定的纳米复合物建立静电相互作用。但是,其主要局限性包括生理pH值的溶解度差和有限的缓冲能力,可以通过功能化其化学结构来克服。本评论对基于壳聚糖的CRISPR/CAS9传递系统的不同方法进行了批判性分析以及未来发展的建议。
最近,针对性的纳米壳的设计用于癌症化学疗法提供了另一种方法。一方面可以通过使用药物包裹的纳米颗粒来拉长血液循环时间并改善肿瘤药物内疏水性药物的生物利用度。另一方面,它可以通过将药物封装的纳米颗粒与靶向配体连接在一起,从而促进肿瘤药物的递送。5,6 These nanovehicles are o en made from macromo- lecular materials such as poly(lactide- co -glycolide) (PLGA), chi- tosan and poly-hydroxyethyl methacrylate/stearic acid, forming dendrimer, liposomes, 7,8 polymers 9 and inorganic nano- particles.10中的壳聚糖(CS)是通过脱乙酰化获得的阳离子自然多糖,是地球上第二大最丰富的生物聚合物损失。11,12 Cs也被称为有希望的生物材料,因为它的生物降解性,无毒性,生物相容性和免疫性。13 - 15但是,CS的水分溶解度差会限制其在药物输送中的应用。16在我们先前的研究中,低分子量的两亲性寡核酸壳可自我组装成水中的纳米细胞,已合成
10.30-11.00 Roland Ludwig: Enzymes contributing to sustainable food production, University of Natural Resources and Life Sciences, Austria 11.00-11.20 Andreja Leboš Pavunc: Use of by-products in the production of new generation encapsulated probiotics, University of Zagreb Faculty of Food Technology and Biotechnology, Croatia 11.20-11.35 Marko Vinceković:动物亚基的双歧杆菌的封装。乳酸化属于复合生物聚合物微粒,萨格勒布大学农业学院,克罗地亚11.35-11.50NaiaraFernández:微取代的工具,是一种增强禁欲酸作为食物防腐剂的性能的工具弗罗茨瓦夫环境与生命科学大学食品化学与生物催化系的商业重要风味和香料化合物的合成,波兰12.05-12.20菲利帕·伯鲁(Filipa Burul)吸引橄榄冠层挥发性化合物,亚得利亚作物研究所和喀斯特开垦,克罗地亚12.20-12.40AntonelaNinčevićGrassino:超声预处理和真空培训的超声浆后南瓜浆的营养特征
引言细菌纤维素(BC)是由一些微生物产生的合成物质,其在生物医学和食品行业中替代植物纤维素的潜力很高(Zhao等,2018)。在生物医学中,BC用作组织工程,人造皮肤,伤口敷料和药物输送载体的材料(Rajwade等,2015)。bc在食品行业中被商业化为Nata de Coco,并用作脂肪替代品,人造肉和稳定剂,以用于皮带乳液(Azeredo等,2019)。BC具有环保生物聚合物的出色特征,该生物聚合物在全球经济中起着至关重要的作用。它用于许多行业,例如纺织品和造纸领域(Shi等,2014)。与植物纤维素相比,BC含有高纯度,因为它没有木质素和半纤维素。此外,卑诗省具有高度的聚合,高结晶度,良好的拉伸强度和高水位的能力(Krystynowicz等,2002)。由木浆产生的纤维素可能带来环境问题,例如森林砍伐。由于该因子,从细菌合成的纤维素被选择作为植物纤维素的替代品(Hashim等,2021)。
最近,从药物到食品企业,在不同领域的柔性材料中,普通聚合物作为柔性材料引起了人们的兴趣。其中,罗望子种子多糖(TSP)成为了有前途的生物聚合物,令人眼花comment乱的科学家和冒险的考虑。从塔玛(Tamarindus)的indica树的种子中获得,TSP具有有趣的主要品质和物理化学特性的有趣组合,使其成为研究的引人入胜的主题。本调查计划全面评估信息的当前状态,包括TSP,挖掘其主要的复杂性,提取技术以及所提供的广泛利用。在我们浏览TSP研究的现场时,我们将研究其流变学的行为方式,生物利用度,生物相容性以及与不同材料的合作。此外,我们还将研究用于隔离和消毒的技术,从而揭示了对提取周期中的困难和进步的见解。药物域,具体来说,可以从TSP的固有特性中受益。从其作为药物输送工具的真实能力到计划受控排放框架的工作,TSP在升级补救结果方面表现出了出色的承诺。此外,其生物相容性
介绍了在惰性气氛下通过扫描隧道显微镜 (STM) 沉积和成像分子的方法和装置。评估了三种应用分子的方法:气相平衡吸附、升华和电喷涂。利用这些方法,各种有机和生物聚合物分子可以在石墨和在云母上外延生长的金 (111) 上沉积和成像。与使用高真空设备或手套箱等替代方案相比,这些程序具有一些重要优势:它们便宜、方便、更快速。当将巯基乙醇、乙醇胺、乙醇、乙酸和水以蒸汽形式引入扫描室时,它们会在金基底上产生二维晶体吸附层。据推测,这些吸附层涉及分子与表面形成的金氧化物之间的氢键合。将蛋白质溶液电喷雾到金表面可获得单个蛋白质分子的图像,其横向尺寸接近 X 射线分析测量的尺寸,厚度为 0.6-1.3 纳米。对于金属硫蛋白,可以重现观察到已知的分子内部结构域。在所检查的其他示例中,无法解析详细的内部结构。
