摘要:木质纤维素材料由纤维素,半纤维素和木质素组成,是海洋环境中最丰富的生物聚合物之一。海洋微生物参与木质素降解的程度及其对海洋碳循环的贡献仍然难以捉摸。在这项研究中,一种新型的木质素降解细菌菌株LCG003,是从东中国海的卢乔港的潮汐海水中分离出来的。从系统发育上,LCG003菌株与家族拟南芥中的Aliiglaciecola属拟合。代谢,菌株LCG003包含各种细胞外(信号粘合)糖苷水解酶基因和碳水化合物转运蛋白转运蛋白基因,并且可以用各种碳水化合物作为唯一碳源生长,包括葡萄糖,果糖,果糖,蔗糖,麦克诺糖,麦芽糖,麦芽糖,麦芽糖,放标蛋白和蜂窝蛋白。此外,菌株LCG003包含许多氨基酸和寡肽转运蛋白以及细胞外肽酶的基因,并且可以用蛋白蛋白作为唯一的碳和氮来源生长,表明蛋白水解生活方式。值得注意的是,菌株LCG003含有DYP型过氧化物酶的基因和菌株特异性基因,其中涉及4-羟基苯甲酸酯和Vanillate的降解。我们进一步证实了它可以使苯胺蓝色脱色并以木质素作为唯一的碳源生长。我们的结果表明,Aliiglaciepola物种可以解聚并矿化木质纤维素材料,并可能在海洋碳循环中起重要作用。
摘要:尽管化学疗法仍然是癌症最喜欢的治疗方法,但大多数化学治疗剂均靶向癌细胞和健康细胞,并且由于毒性较高而引起严重的侧面影响。改善了药物输送系统(DDSS),从而增强了当前化学治疗药物的效率,同时降低了其毒性,这可能是针对这些挑战的潜在解决方案。壳聚糖(CS)及其衍生物是具有可生物降解,可生物性和低毒性特性的生物聚合物,其结构允许方便化学和机械修饰。在其作为治疗剂的作用中,CS可以通过抑制血管生成和转移以及触发凋亡来阻碍肿瘤细胞的增殖。 cs及其衍生物也经常被视为DDSS,因为它们的性质,例如高药物携带能力,聚阳离子结构,长期循环以及癌细胞的直接靶向。 与原始药物相比,与CS及其衍生物相关的有效抗癌作用的各种治疗剂具有较低的侧面效应,这是由于诸如癌症组织中有针对性分布和持续释放的因素。 本综述强调了CS及其衍生物的利用,无论是治疗剂还是作为既定化学治疗药物的载体。在其作为治疗剂的作用中,CS可以通过抑制血管生成和转移以及触发凋亡来阻碍肿瘤细胞的增殖。cs及其衍生物也经常被视为DDSS,因为它们的性质,例如高药物携带能力,聚阳离子结构,长期循环以及癌细胞的直接靶向。与原始药物相比,与CS及其衍生物相关的有效抗癌作用的各种治疗剂具有较低的侧面效应,这是由于诸如癌症组织中有针对性分布和持续释放的因素。本综述强调了CS及其衍生物的利用,无论是治疗剂还是作为既定化学治疗药物的载体。
摘要:尽管化学疗法仍然是癌症最喜欢的治疗方法,但大多数化学治疗剂均靶向癌细胞和健康细胞,并且由于毒性较高而引起严重的侧面影响。改善了药物输送系统(DDSS),从而增强了当前化学治疗药物的效率,同时降低了其毒性,这可能是针对这些挑战的潜在解决方案。壳聚糖(CS)及其衍生物是具有可生物降解,可生物性和低毒性特性的生物聚合物,其结构允许方便化学和机械修饰。在其作为治疗剂的作用中,CS可以通过抑制血管生成和转移以及触发凋亡来阻碍肿瘤细胞的增殖。 cs及其衍生物也经常被视为DDSS,因为它们的性质,例如高药物携带能力,聚阳离子结构,长期循环以及癌细胞的直接靶向。 与原始药物相比,与CS及其衍生物相关的有效抗癌作用的各种治疗剂具有较低的侧面效应,这是由于诸如癌症组织中有针对性分布和持续释放的因素。 本综述强调了CS及其衍生物的利用,无论是治疗剂还是作为既定化学治疗药物的载体。在其作为治疗剂的作用中,CS可以通过抑制血管生成和转移以及触发凋亡来阻碍肿瘤细胞的增殖。cs及其衍生物也经常被视为DDSS,因为它们的性质,例如高药物携带能力,聚阳离子结构,长期循环以及癌细胞的直接靶向。与原始药物相比,与CS及其衍生物相关的有效抗癌作用的各种治疗剂具有较低的侧面效应,这是由于诸如癌症组织中有针对性分布和持续释放的因素。本综述强调了CS及其衍生物的利用,无论是治疗剂还是作为既定化学治疗药物的载体。
使用碳酸钠(NACLO 4)基于琼脂 - 阿加尔(NACLO 4)的生物聚合物电解质膜的开发,使用乙烯碳酸乙酯(EC)作为原发性Na-Ion Battery S. Sowmiya a,*,*,C。Shanthi A,S.Selvasekarapandian B,C. S. Selvasekarapandian B,C a s. s. selvasekarapandian b,c a s。印度NADU,B材料研究中心,Coimbatore 641045,印度泰米尔纳德邦Bharathiar University,Coimbatore 641046,印度泰米尔纳德邦,印度泰米尔纳德邦641046,当前的研究调查了乙烯碳酸盐(EC)碳酸盐(EC)综合perch perch perch perch perch perch perch perch and agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-sod.采用便捷的溶液铸造方法来制造生物聚合物膜。制备的生物聚合物膜的特征是XRD,FTIR,DSC,AC阻抗,TGA,CV和LSV技术。X射线衍射分析(XRD)研究膜的晶体/无定形性质。傅立叶变换红外光谱(FTIR)证实了盐和聚合物之间的络合。添加钠盐并掺入增塑剂可将纯琼脂的离子电导率从3.12×10 -7 s cm -1 cm -1至3.15×10 -3 s cm -1提高。差异扫描量热法(DSC)研究玻璃过渡温度(T g)趋势,盐浓度。最高的导电生物聚合物膜的T g值为22.05°C。热重分析(TGA)检查膜的热稳定性。Wagner的DC极化技术评估了制备的膜的转移数。[4]。分别通过线性扫描伏安法(LSV)和环状伏安法(CV)研究了最高导电膜的电化学和循环稳定性。这些发现促进了具有最高性能生物聚合物膜的原代钠离子导电电池的发展。用两种不同的阴极材料(V 2 O 5和MNO 2)研究了电池的性能,当使用V 2 O 5用作阴极时,达到了3.13 V的最高显着开路电压(OCV)。(收到2023年9月13日; 2023年12月11日接受)关键词:生物聚合物膜,增塑剂,反卷积,电导率研究,环状伏安法1。正在进行研究以创建生物基的聚合物来解决环境挑战,这是当代全球目标的一部分,以为基于生物的未来做一个环保过程[1]。预计聚合物研究的增加,特别是关于生物聚合物,以满足未来的工业需求[2]。聚合物电解质(PE)的主要优势是它们的机械品质,更容易获得的薄膜制造和电化学设备。它们可以与电极材料形成良好的接触[3]。由于它们在固态电化学设备中的用途,离子传导PE引起了固态离子学的注意。聚合物研究的主要基本目标是合成具有优异离子电导率的聚合物系统。由于其强大的离子电导率,广泛的电化学稳定性和高能量密度,它们可以是固态电池中的电解质[5]。固体聚合物电解质(SPE)可以开发各种固态电化学设备,例如电池,燃料电池,传感器和太阳能电池[6,7]。生物聚合物及其基于的产品已被研究针对各种新型应用,在这些应用中,它们可以替代使用现有的
构成世界能源供应的骨干的石油和天然气部门一直在寻找提高其可持续性和效率的方法。在优化石油和天然气勘探,生产和精炼过程的过程中,聚合物添加剂已成为至关重要的元素。在这项综述研究中,对聚合物作为石油和天然气行业的化学添加剂的广泛使用。检查首先检查了该领域经常使用的多种聚合物,例如合成和生物聚合物,并突出其独特的能力。对聚合物的讨论许多用途都以下是其中的,重点是它们在钻孔液中的功能,增强的石油回收方法(EOR)方法,尺度和腐蚀抑制以及减少地层损害。本文还研究了某些聚合物特征(例如分子量,溶解度和化学结构)如何影响它们在特定油田应用中的功能。是使用聚合物的优点和缺点,同时考虑到成本,环境的影响以及与现有系统的兼容性。该分析还评估了当前的聚合物技术进步和进步,突出了未来的新模式和前瞻性用途。这项彻底的评论通过解决重要的问题和机遇来实现深入的知识,以实现聚合物添加剂的全部潜力,最终协助开发石油和天然气部门,以提高更高的可持续性和效率。关键字:EOR,腐蚀抑制剂,CMC,PAM,表面活性剂
摘要:通过减少二氧化碳纤维细纹来降低温室效应的必要性,指示食品包装技术使用生物基材料。藻酸盐是源自棕色藻类物种的,是开发能够保护食物免受氧化/细菌变质的可食用活性涂层的最有希望的生物聚合物之一。在这项研究中,藻酸钠用甘油塑化并与生物基的百里香醇/天然霍洛伊石纳米杂交混合,用于开发新型的可食用活性涂层。纳米复合材料也是通过将纯喇叭岩与藻酸钠/甘油基质混合并出于比较原因将其用作参考材料的。仪器分析表明,与纯藻酸钠/甘油基质相比,百里香/hoy虫纳米杂化与藻酸钠/甘油基质相比具有更高的兼容性。提高兼容性导致拉伸特性,水/氧屏障特性和总抗氧化活性。与未涂层的奶酪相比,这些可食用的活性涂层被应用于传统的希腊奶酪,并在一个log10单元(CFU/g)上显示中介微生物种群的减少。此外,随着梭子石和百里醇含量的增加,中嗜微生物种群的减少增加,表明这种藻酸钠/甘油/百里香醇/甲醇/hay虫水凝胶是奶牛产物的有希望的可食用的活性涂层。
使用化石燃料和塑料产品污染并损害了我们的星球,我们的土地,我们的水和一生。共同的目标是找到解决这个问题并建立更美好世界的策略。一种可能的策略是使用能够生产生物聚合物作为环保和可持续塑料的有趣来源,而无需使用化石燃料。实际上,一些蓝细菌物种可以合成PHB(多羟基丁酸)等生物塑料。此外,由于蓝细菌是光合微生物,固定大气二氧化碳以将其转化为生物质,因此它们具有减少大气中温室气体(GHG)排放的潜力。一种特定的物种,Synechocystis sp。b12,在巴西污染区域中分离出来,在高光中表现出特别优势,并产生了一定数量的PHB。So syechocystis sp。b12在不同的生长曲线,氮饥饿和磷饥饿中生长,然后将这两种应力组合在一起,某些参数(例如OD,PHB积累和糖原趋势)被监测。此外,为了操纵糖原代谢核苷酸和氨基酸序列的GLGP1和GLGP2在参考菌株PCC6803和B12之间对齐以增强差异。然后进行了一些分子生物学实验,目的是过表达参与糖原代谢的基因GLGP2,尤其是在糖原降解中,尝试了稳定重组和瞬时转化的方式。
由于生物和非生物胁迫及其意外的组合,全球植物的发展和作物生产率大大降低。迄今为止,采用的各种化学物质(农药,肥料和植物调节剂)和基因工程技术来提高农作物对多种压力的耐受性,对环境产生了负面影响,并且耗时。这加快了努力,以寻找更环保的方法来控制植物压力。壳聚糖是一种生物聚合物,在很大程度上是从几丁质的脱乙酰基中提取的,并且似乎是克服这些问题以寻找更环保的解决方案的可行工具。由于其生物相容性,生态友好和经济性,成为农业中最受欢迎的生物聚合物之一。壳聚糖还通过信号转导途径激活防御机制,并转导过氧化氢和一氧化氮的二级分子以清除活性氧。在承受诸如干旱,盐和热量等非生物胁迫之前的壳聚糖已被证明可刺激植物的生长并增强抗氧化剂酶的产生,次生代谢产物和脱甲酸。在干旱中,它有助于积累OSMO - 细胞剂,以维持植物细胞的水潜力。另一方面,植物对壳聚糖的反应根据其结构,剂量,发育阶段和作物类型而变化。牢记这些事实的目的是为了更新有关壳聚糖的最新研究,其各种来源及其在不同作物中的有效浓度,针对生物性和非生物压力管理的作用机制,以改善农业的作物生产。
Erwin Schr odinger著名地创造了有意的悖论术语“ Aperiodic Crystal”,以描述我们现在所知道的DNA,RNA和蛋白质生物学聚合物中各种单体单位的序列[1]。这些序列是遗传控制的,因此是“多态”的,但通常不会改变生物聚合物的热运动或通常的动力学,类似于“晶体”。在最近的时间,尤其是在蛋白质折叠研究的背景下,吸引了很多关注的想法,即这些序列与猝灭障碍的特定实现非常相似(请参阅评论中的参考文献列表[2])。因此,具有淬火序列的杂聚物的问题绝不是新的,它一直在各种领域重新出现 - 而且我认为仍在等待更深入的见解。在这里,我想引起对这两篇完全无关的论文的关注 - 但是,这两个论文都在处理这个问题,尽管在非常不同的情况下。dino osmanovi´c在第一篇推荐论文中考虑了某些单体“活跃”的聚合物链的动力学,而另一些单体则是“被动”。这意味着,被动单体是由常规的热三角相关的兰格文噪声驱动的,而活性单体则受到随机非热力的影响,幅度与热能无关,可能与某些非零相关时间无关。该模型的主要动机是染色质 - 细胞中DNA的功能形式。出于在每个特定细胞中,染色质的某些部分(称为白染色质)涉及积极转录的基因,因此与能量消耗(ATP依赖)工作酶相互作用,例如RNA聚合酶,而染色质(称为异染色质)的其他部分是无源的。
摘要:羟基磷灰石(HAP)聚合物复合材料由于其在骨骼再生和牙齿植入物中的应用而受到了极大的关注。本综述研究了HAP的综合,性质和应用,突出了各种制造方法,包括湿,干,水热和溶胶 - 凝胶过程。HAP的特性受到前体材料的影响,通常是从富含钙的蛋壳,贝壳和鱼鳞的天然富含钙来源获得的。复合材料,例如纤维素 - 羟基磷灰石和明胶 - 羟基磷灰石,表现出有望的强度和骨骼和组织替代的生物相容性。金属植入物和脚手架增强了稳定性,包括著名的钛和不锈钢植入物和陶瓷身体植入物。类似壳聚糖和藻酸盐等生物聚合物与HAP结合使用,为组织工程提供了化学稳定性和强度。胶原蛋白,纤维蛋白和明胶在模仿天然骨成分中起着至关重要的作用。各种合成方法,例如溶胶 - 凝胶,水热和溶液铸造产生HAP晶体,并具有潜在的骨修复和再生应用。此外,使用生物塑料材料(例如蛋壳和蜗牛或贝壳)不仅支持可持续的HAP生产,而且还可以减少环境影响。本综述强调了了解脚手架产生钙 - 磷酸化合物(CA-P)化合物的特性和加工方法的重要性,突出了骨愈合中生物材料的新特征和机制。这些方法在特定应用中的比较研究强调了生物医学工程中HAP复合材料的多功能性和潜力。总体而言,HAP复合材料提供了有希望的解决方案,可改善骨骼置换和组织工程的患者结局以及进步的医疗实践。
