摘要:封装已经用于食品,药物,化妆品和农业化学行业,是一种用于保护活性成分免受外部降解因子并控制其释放动力学的策略。已经研究了各种封装技术,既可以优化侵略者的性质的保护水平,又有利于活性化合物扩散和屏障材料降解之间的释放机制。生物聚合物由于其生物相容性,生物降解性和无毒性而特别引起了壁材料的关注。通过在药物周围形成稳定的水凝胶,它们提供了一种“智能”屏障,其行为可以根据环境条件而改变。在对封装的概念和用于实现封装的主要技术(包括微凝胶)的概念进行了全面描述之后,提出了活跃化合物的受控释放的机制。随后出现了天然聚合物的全景,突出了与每种聚合物相关的主要结果,并试图根据包裹的药物识别最具成本效益和最合适的方法。
核酸将功能性生物信息编码为组装成线性聚合物的单体单元序列,该聚合物通过模板指导合成复制并翻译成氨基酸聚合物。1 生物体的进化依赖于这一序列信息传递过程。分子进化已被用于寻找新型功能性生物聚合物以及定制蛋白质以用于治疗或制造应用。2 – 7 尽管如此,当前方法可触及的化学空间仅限于核酸和蛋白质。8 – 10 因此,无法使用基于核酸的复制来针对由包含合成信息的聚合物构成的广阔化学空间区域。11,12 尽管已证明模板指导的聚合物合成适用于多分散性合成聚合物混合物,但这些方法仅限于不包含序列信息的均聚物。13 – 18 目前,含有不同单体单元序列的低聚物的合成依赖于固相方法。 19,20 开发一种在基因组之间传递序列信息的有效方法
摘要:生物学为自修复工程复合材料和聚合物的开发提供了宝贵的灵感。特别是,从蛋白质生物聚合物(尤其是贻贝足丝)中提取的化学级设计原理为合成聚合物中自主和内在修复的设计提供了灵感。贻贝足丝是一种由极其坚韧的蛋白质纤维组成的无细胞组织,由贻贝产生,以牢固地附着在岩石表面上。在表观塑性屈服事件之后,线表现出自修复响应,以时间依赖的方式恢复初始材料特性。最近对定义这种反应的结构-功能关系的生化分析揭示了基于 Zn 2+ 离子和组氨酸氨基酸残基之间的金属配位键的牺牲交联的关键作用。受此例子的启发,许多研究小组开发了基于组氨酸(咪唑)-金属化学的自修复聚合物材料。在这篇评论中,我们详细概述了目前对足丝自修复机制的理解,并概述了基于组氨酸和咪唑的合成聚合物的当前发展水平。
学院拥有高素质的教职员工、最先进的基础设施和精密的实验室设备。学院拥有智能教室和中央图书馆。学院是科钦科技大学(CUSAT)认可的博士学位研究中心。学院与 CUSAT 签署了谅解备忘录(MoU),以共享师资、基础设施等。学院为学生提供奖学金,使弱势群体更容易接受教育。学院的质量管理通过了 ISO:9001-2015 认证。学院与业界有着密切的关系,为学生提供了更好的就业机会。学院设有各种学生俱乐部,将学生与社会联系起来。学院拥有优秀的就业记录、海外就业和在国内外知名机构接受高等教育的经验。教职员工直接参与行业的技术咨询,并获取有关聚合物和相关行业最新技术的最新知识。该学院每年举办“生物聚合物与绿色复合材料”全国会议,为学生和知名科学家和技术专家之间架起桥梁。
最近,一种名为体积打印 (VP) 的新型基于光的制造方法已成为此类应用的一种有前途的技术,它能够在几秒钟内打印复杂的厘米大小的模型。[26,27] 最近的研究表明,使用从玻璃到生物聚合物等材料,可以创建中空、可灌注结构,并可能针对中尺度血管系统。[28–31] 然而,与上述所有方法一样,VP 也无法覆盖从 µ m/亚 µ m 到 cm 的分辨率范围,因此目前将其应用限制在特征 > 100–200 µ m 的微流体结构上。另一种基于光的方法双光子烧蚀 (2PA) 则提供了互补功能,虽然打印时间和构造尺寸有限,但达到了所有生物制造方法中最高的分辨率(≤ 1 µ m)。 [8] 2PA 是基于高强度脉冲激光诱导的多光子电离,[32,33,34] 并且已被探索用于各种应用,从“纳米手术”到形成细胞指导微通道。[35–41]
本综述重点介绍了利用香蕉植物废料生产可生物降解包装的最新进展,强调了其在解决与传统包装材料相关的环境问题方面的关键作用。向可持续包装的转变源于迫切需要对抗塑料污染、减少对不可再生资源的依赖以及促进食品行业的可持续发展。众所周知,香蕉植物在种植和加工过程中会产生大量有机废物,为开发可生物降解包装提供了宝贵的来源。研究人员已成功将香蕉废料转化为创新、可回收和环保的包装解决方案,促进了循环经济。与传统的化石燃料材料相比,可生物降解包装具有许多优势,例如减少对环境的影响和自然分解。最近的进展导致从香蕉废料中提取出多功能生物聚合物,为包装设计提供了灵活性。挑战依然存在,包括可扩展性和经济可行性,需要持续的研究和开发。评估对食品行业的环境影响和影响对于该领域的未来发展至关重要。
环状细菌素 plantacyclin B21AG 的晶体结构和定点诱变揭示了对抗菌活性很重要的阳离子和芳香族残基 Mian-Chee Gor 1,2,+ , Ben Vezina 1,+ , Róisín M. McMahon 1 , Gordon J. King 3 , Santosh Panjikar 4,5 , Bernd HA Rehm 1,6 , Jennifer L. Martin 1,7 , Andrew T. Smith 1,8, * 1 格里菲斯大学格里菲斯药物发现研究所,Don Young Road,Nathan,昆士兰州,4111 澳大利亚。2 皇家墨尔本理工大学科学学院,Plenty Road,Bundoora,维多利亚州,3083 澳大利亚。3 昆士兰大学理学院,昆士兰州,澳大利亚。4 澳大利亚同步加速器,ANSTO Clayton,维多利亚州,澳大利亚。 5 莫纳什大学分子生物学和生物化学系,墨尔本,维多利亚州,3800 澳大利亚 6 格里菲斯大学细胞工厂和生物聚合物中心,格里菲斯药物发现研究所,内森,昆士兰州,4111 澳大利亚。 7 伍伦贡大学,诺斯菲尔兹大道,伍伦贡,新南威尔士州,2522 澳大利亚。 8 格里菲斯科学学院,格里菲斯大学,黄金海岸,昆士兰州,4222 澳大利亚。
聚合物被认为是天然或合成起源的一类材料,由大分子组成,大分子是所谓的简单化学单元的倍数。这些不同的元素是药物输送应用的骨干,在组织工程,生物传感器,成像设备,化妆品等生物医学领域具有巨大的适用性。天然聚合物,例如蛋白质(例如,明胶),多糖(例如淀粉纤维素,壳聚糖)和核酸作为生物系统中的基本成分存在,并且由于其合适的质量而被广泛使用,包括生物降解性,生物降低性,生物兼容性和非毒性[1]。它们的合成对应物是制造/设计的,不仅可以模拟这些生物聚合物,还可以通过各种功能组的附件修改它们,并结合两个聚合物以满足当今的需求。这些聚合物包括均聚物,块/统计共聚物,移植共聚物(包括在表面上/从表面上移植)和分子刷[2]。当今,聚合物在各个领域的适用性面临着挑战,这增加了对敏感和高效系统的需求。在这种情况下,对聚合系统的巨大需求不仅可以增强灵敏度,还可以最大程度地减少副作用[3]。在各种天然和合成
2024年12月10日,阿联酋生物技术选择了Sulzer技术,以建立世界上最大的多乳酸生产设施Sulzer的技术已由Amirates Biotech为其即将到来的阿拉伯联合酋长国即将推出的多乳酸(PLA)生产工厂选择。该设施将分为两个阶段,每个阶段的年产能为80,000吨,每年的总生产能力为160,000吨。完成后,它将是世界上最大的PLA生产设施。PLA提供了传统塑料的可持续替代品。它被广泛用于包装,一次性用具等应用中,有助于减少对全球一次性塑料的依赖。Amirates Biotech将利用Sulzer的许可PLA技术来管理单个位置的所有生产步骤,包括乳酸盐生产,纯化和聚合。该设施还将使用基于植物的原料来大规模生产高质量的PLA生物塑料,从而将中东定位为生物塑料行业的关键参与者。可持续的传统塑料替代品,由于其在生物塑料领域的良好往绩,Sulzer的许可PLA技术已经在全球大多数PLA设施中使用。这一新发展增强了Sulzer致力于支持全球行业采用循环制造和建立更繁荣和可持续的社会的承诺。位于阿拉伯联合酋长国,建筑定于2025年开始,该工厂预计将于2028年初运营。该设施将使用乳酸(LA)作为原料来产生PLA,提供低碳足迹和可生物降解的常规塑料替代品,进一步促进了循环经济。Chemtech部门总裁Tim Schulten说:“我们很高兴与Amirates Biotech合作在这个开创性的项目上通过将我们先进的PLA生产技术带到阿联酋,我们正在支持该地区向更可持续的材料的过渡,并为更绿色的未来做出了贡献。” Emmanuel Rapendy,Sulzer Chemtech的全球首席聚合物和结晶继续说:“由于环境挑战强调了全球采用生物聚合物的需求,这是一个极为重要的项目,反映了我们从地面上解决可持续性的精神。我们的技术不仅可以实现更清洁的过程和最终产品,还可以确保我们的设备和系统具有很高的效率,从而限制了操作所需的能量输入。” Amirates Biotech首席执行官Marc Verbruggen促进了全球采用生物聚合物,他说:“我们与Sulzer的合作关系标志着我们建立世界一流的PLA生产设施的旅程中的重要里程碑。Sulzer的专业知识和创新解决方案对于实现我们领导生物聚合物行业的愿景至关重要,同时为更可持续的未来做出了贡献。”
自 1999 年出版上一版以来,聚合物科学与工程领域取得了长足进步和变化。这些进步源于我们越来越有能力使用先进的聚合技术制造具有定制结构和/或分子量分布的各种聚合物,以及使用现代分析技术表征这些聚合物在不同长度尺度上的结构和相应的特性。这种趋势在一定程度上是由于具有定制结构的聚合物是我们面临的关键社会挑战(如能源、水、环境和医疗保健领域)解决方案的重要组成部分。值得注意的是,大批量聚合物(例如聚乙烯)也采用定制结构来改善其性能。聚合物领域的另一个新兴领域是希望使用来自可再生资源的材料(目前占整个市场的不到 1%),因为人们越来越意识到使用来自石油来源的聚合物的重要性。因此,我们增加了一个新章节(第 13 章)来介绍生物聚合物在各种应用方面的新趋势以及已经研究过的生物聚合物类型。尽管如此,为了制造具有定制结构的聚合物,需要更深入地了解分子结构特性关系。因此,本版的编写强调从分子水平理解涉及使用聚合物的现象和过程。在这方面,在整本教科书中,如果适用,我们会从分子结构,特别是构象的角度解释与聚合物有关的概念和/或行为。事实上,第 1 章增加了一个新的部分来详细阐述构象的概念和与该概念相关的各种理论模型。增加了一个关于聚合物中扩散的新章节(第 6 章),因为这个主题是许多现代技术的核心(例如,使用聚合物膜分离气体)。在这一版中,我们决定不包含有关聚合物加工和聚合物降解的额外主题,因为预计本书将用于一学期的聚合物入门课程。学生应该查阅有关这些主题的更专业的教科书。本书已进行了大量重组以适应教学要求,即前六章主要涵盖聚合物构象的基本概念和模型(第 1 章)、平均分子量的定义及其测量(第 2 和 3 章)、聚合物的物理和机械性质(第 4 章)以及聚合物溶液和共混物(第 5 章)。如上所述,第 6 章涵盖了一个古老但重要的主题:聚合物中的扩散。本书的后半部分(第 7 至 13 章)主要关注聚合技术。特别是,第 12 章涉及聚合反应工程。我们把第 13 章放在了书的后半部分
