通过同源定向修复 (HDR) 进行基因组编辑使得对基因序列进行精确而慎重的修改成为可能。CRISPR/Cas9 介导的 HDR 是实现这一目标的最简单方法。然而,在提高效率和扩大对果蝇以及其他果蝇物种的任何遗传背景的适用性方面仍然存在技术挑战。为了解决这些问题,我们开发了一种两阶段标记辅助策略,以促进果蝇的精确、无疤痕编辑,而几乎不需要分子筛选。使用与重组 Cas9 蛋白复合的 sgRNA,我们分析了每个 sgRNA 的基因组切割效率。然后,我们使用有效切割目标基因的 sgRNA 和转化标记的新应用进行 HDR。这些新工具可用于在感兴趣的区域进行单个更改或一系列等位基因替换,或创建其他遗传工具,例如平衡染色体。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 1 月 9 日发布。;https://doi.org/10.1101/2021.01.09.426030 doi:bioRxiv preprint
本研究提出了一种新的神经自适应技术概念,即双被动-反应脑机接口 (BCI),可实现人机之间的双向交互。我们已经在逼真的飞行模拟器中实现了这样一个系统,使用 NextMind 分类算法和框架来解码飞行员的意图 (反应性 BCI) 并推断他们的注意力水平 (被动 BCI)。12 名飞行员使用反应性 BCI 执行检查表以及由被动 BCI 监督的防撞雷达监控任务。当后者检测到飞行员错过了即将到来的碰撞时,它会模拟自动避让动作。反应性 BCI 达到 100% 的分类准确率,平均反应时间为 1 。专门执行检查表任务时为 6 秒。准确率高达 98 。5% ,平均反应时间为 2 。5 秒,飞行员还必须驾驶飞机并监视防撞雷达。被动 BCI 的 F 1 − 得分为 0 。94 。首次演示展示了双 BCI 改善人机协作的潜力,可应用于各种应用。
预印本(未经同行评审认证)为作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 11 月 11 日发布。;https://doi.org/10.1101/2020.11.11.377630 doi: bioRxiv preprint
(a)Q. Alba基因组组装的HAPA和HAPB之间的结构同步。两个反转超过1 Mb:3染色体上的1.1 Mb反转和染色体上的1.9 Mb反转。35S阵列的位置用红色正方形表示,5S阵列用红色圆圈表示。(b)中期染色体用两对35(绿色)和一对5s(红色)rDNA信号扩散。小型35S信号由白色箭头指示。
b'. CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是'
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年2月13日。 https://doi.org/10.1101/2024.02.09.579718 doi:Biorxiv Preprint
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2020年12月21日发布。 https://doi.org/10.1101/2020.12.12.18.423326 doi:biorxiv preprint
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年6月24日。 https://doi.org/10.1101/2024.06.20.599684 doi:Biorxiv Preprint
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月28日。 https://doi.org/10.1101/2025.01.08.632037 doi:biorxiv preprint