目前,医疗保健领域出现了所谓的新一轮创新浪潮,主要涉及细胞、基因、干细胞或基于 RNA 的疗法。这些趋势是生物医学领域发展的关键因素,也是设计波兰生物医学领域方向的源泉。该领域的研发活动虽然已经产生了有价值和有效的解决方案,例如基于 mRNA 技术的疫苗或由医学研究机构支持的 CAR-T 细胞疗法,但仍然是高风险活动,需要大量投资支出——包括政府支持、多个机构和来自多个领域的专家的合作、专门的研发基础设施和跨学科方法,”强调
mm。Bacin Franck-贝格·雷恩(BegueRené-Jean -Jean -Jean -beytout Jean -boire Jean -yves -boiteux jean -paul -paul -paul -bommelaer gilles -bommelaer gilles -boucher daniel -bussiere daniel -bussiere jean- jean-noëlcano- -Clement Gilles -Dastugua Bernard -Dauuplat Jacques -DeChelotte Pierre -DemeocqFrançois -de Riberolles Charles -DeTeix Patrice -Escande Georges -MME Fonck Yvette -M。Gentou Claude -M. Gentou -Mmeme -Mmeglanddier Phyllis -Phyllis -Mmmmmmmmmmmm。Irhum Bernard - Jacquetin Bernard - Kemeny Jean -Louis - Laurichese Henri - Laveran Henri - Lesourd Bruno - Levai Jean -Paul - Lusson Jean -René - Mage Gérard - Michel Jean -Luc - Philippe Pierre - Planche Roger - Ponsonnaille Jean - Mme Rigal Danièle - MME -MME RigalDanièle -MM。Rozan Raymond -Schoeffler Pierre -Sirot Jacques -Ribal Jean -Pierre -Souteyrand Pierre -Tanguy Alain -Tanguy -Terver Sylvain -Terver Sylvain -Thieblot -Thieblot Philippe -Tournilhac Michel -Michellet -Viallet -Viallet -Fiallet Jean-François -François-Verrelle Pierre -Mme veyre veyre veyre veyre veyre
这些方面的未来意义自然很难精确地预测。但是,在可预见的将来将它们驳回诸如“这将保持不变”或“这将永远不会构成任何事物”之类的陈述似乎越来越不合适,而在沟通和行为模式在全球范围内以及以前所未有的速度变化以及所有社会阶层的变化时(Sauter 2013,第20页,第20页)。以下讨论的起点是Engelhard/Hagen(2012)的报告,该报告通过对公共和私人研究机构的参与者的访谈,探讨了他们对DIY生物学运动的影响以及如何影响。首先通过RüdigerTrojok(2012)的简短专业知识进行了对该主题的首次加深,以及Christof Potthof(2013)的评论报告(2013年)(Gen-Ethisches netzwerke。V.)。最终阐述是由RüdigerTrojok在另一个短期专业知识(Trojok 2014)的过程中进行的,并在最终报告准备中作为ITAS员工进行了。
木薯皮表明,作为生物肥料生产的载体材料的潜力。木薯皮在许多发展中国家中大量且实际上没有经济价值,因此,它满足了其作为生物肥料载体材料的采用标准。这项研究评估了木薯果作为生物肥料的营养载体的潜力及其对玉米生长的影响。cassava peel的水分含量低,散装密度,高孔隙度和良好的吸水能力,这有助于接种剂生存,如植物生长参数的显着(P <0.05)增加,在对照组中,植物的生长参数较高(P <0.05),在对照组中,植物高度和植物高度的叶子数量较高。关键字:木薯皮,生物肥料,载体材料,作物产量,土壤改善1。简介
该项目的共同负责人、澳大利亚研究理事会合成生物学卓越中心主任、杰出教授伊恩·保尔森 (Ian Paulsen) 表示:“通过成功构建和调试最终的合成染色体,我们帮助完成了一个强大的工程生物学平台,这可能会彻底改变我们生产药品、可持续材料和其他重要资源的方式。”
塑料污染已升级为全球环境危机,数百万吨合成聚合物在生态系统中积累,对生物多样性和人类健康构成重大威胁。传统的塑料废物管理方法,如机械和化学回收,在可持续性方面表现出局限性,特别是对于聚乙烯 (PE) 和聚苯乙烯 (PS) 等聚合物,它们表现出明显的抗降解性。利用微生物酶和合成生物学的生物技术方法为解决这一紧迫问题提供了一种有希望的替代方案。促进聚对苯二甲酸乙二醇酯 (PET) 降解的酶(如 PETase 和 MHETase)与针对更难降解塑料的漆酶和脂肪酶结合,在分子水平上分解塑料方面表现出了巨大的潜力。尽管取得了这些进展,但在降解效率方面仍然存在挑战,尤其是对于非 PET 塑料,以及扩大这些生物技术工艺的经济可行性。此外,温度、pH 值和氧气水平等环境参数显著影响酶的功能,而监管和社会障碍阻碍了转基因生物 (GMO) 的利用。尽管如此,蛋白质工程、基于 CRISPR 的基因编辑等新兴技术以及生物反应器等工业应用为克服这些挑战提供了途径。本文探讨了生物技术塑料降解的当前形势、挑战和前景,强调了其对实现全球循环经济目标和加强可持续废物管理战略的潜在贡献。
本课程的设计是为了使本科学习计划的三年级学生知道生物技术的历史发展;它解释了生物技术生产的开端和方法,这些生物技术生产导致现代生物技术作为跨学科领域的发展,这些领域使用了来自各种天然和工程领域的知识,以生产重组蛋白(胰岛素,干扰素)和抗体等药物。也在讲座期间,学生将深入了解生物技术在创造和应用转基因生物(GMO)中所发挥的关键作用。学生还将熟悉现代生物技术的基本分支之一 - 绿色生物技术,该分支机构使用并应用生物技术知识来处理废水和通过生物修复方法的污染。在课程中特别强调将进行练习,在此期间,学生将在生物技术微生物(例如酵母和细菌),克隆,蛋白质表达,质粒DNA和蛋白质的纯化中获得知识和实践经验。该课程的目的是获取与生物技术基本概念有关的知识,其意义和发展最终导致了新药研究和生产领域的生物技术发展。将特别强调在课程实验室练习期间获得实践经验,这将使学生能够在药物研究和生产中熟悉相关的生物技术方法。
荣誉教授:盖伊·巴拉萨德先生,伊夫·巴拉先生,克劳德特·布莱恩德女士,雅克·卡特丁先生,MmeAndréeCremieux,GérardDumenil先生E Sylvie负责上学的Manon Bonifay女士:Nathalie Besnard夫人
肝癌仍然是全球最致命的癌症之一,这主要是由于其后期诊断和有限的治疗选择。然而,生物技术的最新进展,尤其是在器官领域,正在为理解疾病和发展有针对性的治疗而开辟了新的途径。这项研究中最有希望的领域之一是探索肥大的细胞死亡形式,该形式在癌症治疗中可能存在潜力。在本评论中,我们探讨了器官技术在研究肝癌及其对铁铁毒性症的敏感性中的作用,突出了最新的突破和未来的挑战。