园艺在全球粮食安全,人类营养和经济发展中起着至关重要的作用。然而,园艺作物面临害虫,疾病和环境压力的重大挑战,导致了大量产量损失。由于园艺作物的遗传基础狭窄,传统繁殖的性质狭窄,传统的繁殖方法在发展抗病和高产量的品种方面存在局限性。生物技术工具提供了有希望的解决方案来克服这些挑战并提高园艺中的作物生产力和抗病性。本评论文章探讨了各种生物技术方法,包括标记辅助选择(MAS),基因工程,基因组编辑和微繁殖,及其在提高园艺作物中疾病耐药性和作物生产率方面的应用。mas通过使用与感兴趣的特征相关的分子标记,可以精确,快速选择所需的性状,例如抗病性。遗传工程允许将各种来源的新基因引入园艺作物中,以赋予对特定病原体和害虫的抗性。基因组编辑技术,尤其是CRISPR/CAS9,为植物基因组的精确和有针对性的修饰提供了强大的工具,以增强疾病抗性和其他期望的特征。微繁殖技术促进了无疾病的种植材料的快速繁殖和珍贵种质的保护。本文还讨论了将生物技术工具应用于园艺作物改善的挑战和未来前景。1。将生物技术方法与常规育种和可持续的作物管理实践的融合在一起,在面对全球挑战的情况下,开发抗疾病和高产的园艺作物,确保粮食安全并促进可持续的园艺。关键字:生物技术;抗病性;作物生产率;园艺;分子育种。引言园艺是农业的重要部门,涉及水果,蔬菜,观赏植物和药物作物的种植。它在确保食品和营养安全,产生收入并促进全球可持续发展方面起着至关重要的作用[1]。然而,园艺作物容易受到各种生物和非生物胁迫的影响,包括害虫,疾病和环境因素,这些因素可显着降低作物产量和质量[2]。传统上,传统的育种方法被用来开发具有增强疾病耐药性和生产力的改善品种。但是,这些方法是耗时,劳动密集型的,并且受培养基因库中可用的遗传多样性的限制[3]。生物技术工具已成为有力而创新的方法,以应对园艺作物面临的挑战和
人们发现,生物技术在药物研发中的应用是一种有前途且资源丰富的方法,可用于发现新的治疗候选药物,与传统的药物研发方法相比,这种方法花费的时间和成本更少。这还使研究人员对疾病有了必要的了解,从而为治疗患者提供了特殊的方法。此外,在生物技术的帮助下,诊断和治疗变得越来越紧密。今天,生物技术研究人员正在研究疾病的根源,并通过治疗剂找到解决方案,从而提高生活质量。如果没有良好的生物技术建模,近来药物的研发实际上具有挑战性,这种奇妙的技术现在被用于发现新的有效药物,包括但不限于基因治疗、癌症疫苗、蛋白质甚至酶。在目前的综述中,我们回顾了迄今为止在药物研发中使用这种方法的努力。本综述针对药物研发中的生物技术应用和设计实施。它解释了如何使用蛋白质、基因、计算机模拟和干细胞来设计增强药物发现的模型、用于药物发现的化学相似性网络,以及未来将人工智能融入生物技术的建议。
摘要 芫荽 ( Coriandrum sativum L.) 是一种重要的草本植物,广泛用于全球烹饪、药用和芳香应用。芫荽改良的关键进展包括提高产量、抗逆性和植物化学物质的产生。生物技术方法在应对抗病性、环境压力和质量改进等挑战方面的潜力已被充分了解。CRISPR/Cas9 等基因改造技术已实现精确的基因编辑,以实现抗病性、除草剂耐受性和改善营养吸收等特性。此外,生物技术工具可实现精确的基因编辑,允许在不引入外来基因的情况下进行有针对性的修改。这种方法确保了转基因芫荽品种的安全性和法规遵从性,解决了与消费者接受度和环境影响相关的问题。此外,组织培养协议的进步促进了优良芫荽品种的快速繁殖,规避了与种子发芽和保持遗传纯度相关的问题。采用标记辅助选择 (MAS) 和基因组选择的分子育种策略加速了具有理想农艺性状的高产芫荽品种的开发。包括基因组学、转录组学和代谢组学在内的“组学”方法在阐明芫荽重要性状的遗传基础方面提供了宝贵的见解,了解了芫荽发育、应激反应和次生代谢物生物合成的分子机制。本综述概述了芫荽研究的最新生物技术进展,重点关注基因工程、组织培养、代谢组学和分子育种等领域,旨在提高芫荽的产量、质量和抗逆性。关键词:芫荽、生物技术、基因工程、
摘要:糖基转移酶(GTS)几乎存在于所有生物体中;植物,动物和微生物。gts将糖分子从核苷酸糖转移到包括激素,继发代谢产物,生物和非生物化学物质在内的各种分子。当糖基转移酶在任何分子中添加糖部分时,该分子的亲水性会改变,从而改变分子的化学特性。这种现象对于适当的活生物体工作至关重要。首次报道了噬菌体T4-葡萄糖基转移酶的X射线结构。在细菌中,GTS在各种生物学过程中起着重要作用,例如细胞壁生物合成,表面糖基化和毒力因子的产生。在细菌中报道了点突变以及域交换。序列变化以及整个细胞也已在细菌中进行了设计。gts在生存,生长,发育,代谢,解毒,抗杀虫剂的形成,化学敏感,防御和免疫力中起着非常重要的作用,参与了各种信号通路等。在植物中,糖基转移酶在细胞壁成分,次生代谢产物和信号分子的生物合成中起着至关重要的作用。gts参与糖部分从活化的供体分子转移到特定的受体分子,导致形成糖苷键。gts修改类黄酮,生物碱和萜类化合物等。GT对植物稳态有直接影响。有针对性的诱变已通过现场带有糖残留物并改变这些化合物的溶解度,稳定性和生物活性,并调节植物防御机制以及与昆虫,微生物和其他生物的相互作用。UGT或GTS中定向诱变(SDM)的位点导致底物特异性的变化,并在催化活性GT中增加或总损失。这种变化表明,底物特异性的变化可能会导致更好的糖基化和UGT的抗癌活性。gts还参与了植物激素的糖基质,并调节其代谢和信号通路。gts参与了这些激素的活动,稳定性和运输,并影响植物的生长,发育和对各种环境刺激的反应。Four UGT families encoding 200 genes are reported in humans which regulate cell signaling, protein folding, immune response, growth and development, detoxification, metabolism and elimination of drugs, DNA methylation and histone modifications, transcriptional regulation, post-transcriptional regulation and post-translational regulation, synthesis of human blood group antigens A and B and recently GTs are also reported as linked with COVID-19与气味或味道的丧失。已经开发了各种生物信息学工具,这些工具将有助于使用任何参考酶在GTS的结构中进行分析。可以在进行体外分析(例如诱变)之前进行活性和有序结构以及各种稳定性测定。
注意:E /TFA:总脂肪酸中的EPA含量(%); E /DCW:干细胞重量(%)中的EPA含量; D /TFA:DHA内容1 < /div>
全球动物生产趋势表明,牲畜产品的消费量迅速而大量增加。可以预测,在印度等发展中国家,肉类和牛奶的消费量分别为每年2.8%和3.3%。目前,该国面临61.1%绿色饲料的净赤字,干作物残留物为21.9%,饲料中的净赤字为64%。要达到当前的牲畜生产水平及其年度增量,必须通过提高生产率来满足饲料,干作物残基和饲料的所有部分的缺陷,利用未开发的饲料资源和/或增加土地面积。通过广阔的草原和牧场满足了大量的饲料需求。其位置的任何积极或负面变化都会影响几个环境问题。同样,牲畜人口的增加也会影响有机废物的可用性,这反过来又可以增强农业生产。因此,环保的饲料生产系统至关重要。通过加强草原/放牧土地/牧场的研究和发展活动,开发双重粮食作物品种,保持绿色QPM玉米品种,生物技术在遗传上改善了基因工程改善的对非生物和生物压力的改善品种,并通过Bierseem,Lucerne biot treest,Oaterage oat sorgeage sorgeage sorgeage sorgeage sorgege sorge tork and of torks conderge sorgege sorge tork and vorts of forderne fortern forderne fords sorge and ford sorgege sorge and ford fordern范围。许多饲料物种遭受了狭窄的遗传基础和使用公约繁殖技术的改进计划,已经达到了高原。然而,过去二十年来,巨大的技术发展为植物科学家提供了巨大的选择,可以根据需要调整植物。因此,IND世界作物科学大会的工作组强调了基因组映射和标记协助选择植物育种的选择,以认识到同步的重要性。在IGFRI,朝这个方向发展的努力始于八十年代后期,从那时起,IGFRI致力于解决广泛的杂交,了解Apomixis,生物多样性分析,链接图的发展以及对经济重要性特征的标记识别的问题。在本公告中已经编制了有关某些饲料物种的生物技术方法的作物约束,倡议,成就和前景。科学家/作者为展示该公告所做的良好努力得到了高度赞赏。
由于近期取得的成就,莱茵衣藻正逐渐成为生物技术生产平台,我们将在本综述中简要总结这些成就。首先,由于近年来取得了一些令人印象深刻的改进,现在可以实现强大的核转基因表达。目前已有可实现高效、稳定核转基因表达的菌株,并且最近通过实现遗传杂交和识别其致病突变,使其更适合合理的生物技术方法。基于 Golden Gate 克隆的 MoClo 合成生物学策略是为衣藻开发的,它包括一个不断增长的工具包,其中包含 100 多个遗传部分,这些部分可以按照预定义的顺序进行稳健、快速的组装。这允许快速迭代转基因设计、构建、测试和学习。另一项重大进展来自各种改进转基因设计和表达的发现,例如系统地将内含子添加到密码子优化的编码序列中。最后,自 2016 年首次成功报道以来,CRISPR/Cas9 基因组编辑技术经历了多次改进,这为通过关闭竞争途径来优化生物合成途径提供了可能性。我们提供了一些例子,表明所有这些最新进展都牢固地确立了衣藻作为合成生物学底盘的地位,并允许将其代谢重新设计为新功能。
食用花卉在世界各地有着丰富的消费和文献记录,横跨希腊、罗马、中世纪欧洲等古代文明以及中国和日本等亚洲国家 [1,2]。随着时间的推移,全球化和消费者意识的增强重新点燃了人们对食用花卉的兴趣,因为它们具有增进人类福祉和健康的潜力。研究重点关注其生物活性化合物,包括天然色素、精油和抗氧化剂,阐明其促进健康的功效和民间药用用途。食用花卉中常见的植物化学物质如表 1 所示。为了满足消费者对天然、功能性和健康食品的偏好,食用花卉在市场上获得了相当大的吸引力,导致人们对菊花、木槿、薰衣草、万寿菊和玫瑰等几种花卉的潜在益处进行了评估 [13,14]。大约有 180 种花卉被认定适合人类食用,可食用花卉不仅具有美感,而且是一种安全又有营养的选择。这些花朵除了香气之外,还作为食品中的功能性成分发挥着至关重要的作用,当加入各种菜肴和饮料(如茶、葡萄酒、果汁等)中时,还具有潜在的健康优势。[15,2]。除了烹饪吸引力之外,它们在传统医学中的广泛历史用途凸显了它们的药用价值。
•从采购原材料,运输,存储,制造业以及前往市场以建立弹性供应链的过程来可视化过程。•非食用生物量(例如木材或草)目前是白色和绿色生物技术的主要来源。•对于红色生物技术,必须考虑与与同种异体细胞和细胞培养相关的原材料和成分供应相关的风险。
在大多数农田中,杂草管理主要依赖于综合杂草管理 (IWM) 策略,例如使用除草剂。然而,除草剂的过度使用和滥用,加上缺乏新的活性成分,导致全球抗除草剂杂草呈上升趋势。此外,杂草性状导致杂草种子库持久存在,进一步加剧了杂草管理的挑战。尽管人们不断努力确定和改进当前的杂草管理过程,但农业杂草管理对新型控制技术的迫切需求不容忽视。CRISPR/Cas9 基因编辑系统的出现,加上“组学”和更便宜的测序技术的最新进展,使人们关注到通过直接基因控制方法管理农田杂草的潜力,但可以稳定或暂时实现。这些方法涵盖了一系列技术,这些技术可以潜在地操纵杂草中关键基因的表达以降低其适应性和竞争力,或者通过改变作物来提高其竞争力或除草剂耐受性。减少或避免农田化学药品的使用为开发实用可行的杂草管理分子方法提供了额外的动力,尽管在杂草管理中利用这些潜在的分子技术存在重大的技术、实践和监管挑战。