LUIS 商标只能以提供的变体形式使用,不得复制或修改。为了正确使用 LUIS 商标,必须避免以下几点:› 品牌不得扭曲或压缩。› 品牌不得倾斜。› 文字/图形标记的颜色是固定的,不得重新着色。› 文字/图形标记组合的元素不得更改。› 除深蓝色企业颜色外,品牌不得放置在其他颜色的背景上。
激光粉末床熔合是一项新兴的工业技术,尤其适用于金属和聚合物应用。然而,由于氧化物陶瓷的抗热震性低、致密化程度低以及在可见光或近红外范围内的光吸收率低,将其应用于氧化物陶瓷仍然具有挑战性。在本文中,给出了一种增加粉末吸收率和减少激光加工氧化铝零件过程中开裂的解决方案。这是通过在喷雾干燥的氧化铝颗粒中使用均匀分散和还原的二氧化钛添加剂(TiO 2 − x)来实现的,从而导致在粉末床熔合过程中形成具有改善的热震行为的钛酸铝。评估了不同还原温度对这些颗粒的粉末床密度、流动性、光吸收和晶粒生长的影响。使用含有 50 mol% (43.4 vol%) TiO 2 − x 的粉末可以制造出密度为 96.5%、抗压强度为 346.6 MPa 和杨氏模量为 90.2 GPa 的裂纹减少的零件。
巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
黑豆 [ Vigna mungo (L.) Hepper] 是一种营养丰富的豆科作物,主要生长在南亚和东南亚,其中印度的种植面积最大,那里的黑豆作物受到多种生物和非生物胁迫的挑战,导致产量严重损失。改善遗传收益以提高农场产量是黑豆育种计划的主要目标。这可以通过开发对主要疾病(如绿豆黄花叶病、乌豆叶皱缩病毒、尾孢叶斑病、炭疽病、白粉病)和昆虫害虫(如白蝇、豇豆蚜虫、蓟马、茎蝇和豆象)具有抗性的品种来实现。除了提高农场产量外,结合市场偏好的性状还能确保采用优良品种。黑豆育种计划依赖于有限数量的亲本系,导致所开发品种的遗传基础狭窄。为了加速遗传增益,迫切需要纳入更多不同的遗传物质,以改善育种群体的适应性和抗逆性。本综述总结了黑豆的重要性、主要的生物和非生物胁迫、可用的遗传和基因组资源、潜在作物改良的主要性状、它们的遗传以及黑豆用于开发新品种的育种方法。
摘要:黑洞信息之谜源于广义相对论与量子理论对黑洞辐射性质的结论存在差异。根据霍金最初的论证,辐射是热的,因此其熵会随着黑洞的蒸发而单调增加。相反,由于量子理论中时间演化的可逆性,辐射熵应该在一定时间后开始减小,正如佩奇曲线所预测的那样。基于复制技巧的新计算证实了这种减小,并揭示了其几何起源:复制品之间形成的时空虫洞。在这里,我们从量子信息论的角度分析了这些结论与霍金最初结论之间的差异,特别是使用了量子德菲内蒂定理。该定理意味着存在额外的信息 W,它既不是黑洞的一部分,也不是辐射的一部分,而是起着参考的作用。通过复制技巧获得的熵可以被识别为以参考 W 为条件的辐射的熵 S ( R | W ),而霍金的原始结果对应于非条件熵 S ( R )。熵 S ( R | W ) 在数学上是集合平均值,在对 N 个独立准备的黑洞进行实验时,它获得了操作意义:对于较大的 N ,它等于它们联合辐射的归一化熵 S ( R 1 · · · RN ) / N 。这个熵和 S ( R ) 之间的差异意味着黑洞是相关的。因此,复制虫洞可以被解释为这种相关性的几何表示。我们的结果还表明广泛使用的随机幺正模型可以扩展到多黑洞,我们通过非平凡检验支持了这一点。
路易斯商标只能在提供的变体中使用,并且不得复制或修改。必须避免使用以下几点以正确使用路易斯商标:›不得扭曲或压缩品牌。›不得倾斜品牌。›单词/色调标记的颜色已固定,不得重新添加。›单词/配置标记组合的元素可能不会更改。›除了深蓝色的企业颜色外,该品牌可能不会放置在其他有色背景上。
2D Code Symbologies PDF417, MicroPDF417, TLC-39, Composite codes, Aztec, Data Matrix, MaxiCode, Micro QR Code, MicroPDF, QR code, Postnet, HanXin Code, DotCode , SecurPharm, Dotted DataMatrix
机制[3,4]。炎症在动脉粥样硬化中起着核心作用,并与动脉壁中最小氧化的低密度脂蛋白(OX-LDL)同时发展。在内膜中,LDL通过活性氧(ROS)进行氧化修饰,从而促进脂质摄入巨噬细胞[5]。巨噬细胞代表早期动脉粥样硬化病变中的主要细胞类型,并在病变进展的各个阶段起重要作用。动脉粥样硬化病变中巨噬细胞的表型可能会受到谱系承诺和表型变化的影响。然而,动脉粥样硬化动脉中的巨噬细胞最终通过由摄取改良的LDL和胆固醇外排和
合著者:PERUZZO 教授,Alberto(RMIT);JOHNSON 博士,Brett(RMIT);KRASNOKUTSKA 博士,Inna(RMIT);BULLOCK 博士,James(墨尔本大学);MESSALEA 博士,Kibret(RMIT);CHAPMAN 博士,Robert(苏黎世联邦理工学院);TAMBASCO 博士,Jean-Luc(RMIT)
组织者 2024 年 Sammaniversary 研讨会,庆祝 Saman Amarasinghe 60 岁生日。在麻省理工学院举办。 2024 年稀疏研讨会(原 CTSTA) 汇集稀疏张量代数、图算法和关系代数编程系统领域的顶尖研究人员的研讨会。与 PLDI 在同一地点举行。 2023 年稀疏张量代数编译器技术研讨会 汇集稀疏张量代数编译和计算领域的顶尖研究人员的研讨会。与 PLDI 在同一地点举行。 2019 年稀疏张量代数编译器技术特邀研讨会 邀请来自 11 所大学、6 家公司和 3 个国家实验室的稀疏张量代数编译和计算领域的顶尖研究人员。 2012–2013 年 MIT 编程语言场外务虚会 七位 CSAIL 教授及其研究小组参加。围绕许多简短的演讲重新组织了节目,主持了小组讨论,邀请了外部演讲者,并发表了开幕词。