摘要:- 叶片跟踪是确定螺旋桨叶片尖端相对于彼此的位置的过程(叶片在同一旋转平面上旋转)。跟踪仅显示叶片的相对位置,而不是它们的实际路径。所有叶片应尽可能紧密地跟踪彼此。在航空学中,螺旋桨(也称为螺旋桨)将发动机或其他动力源的旋转运动转换为旋转的滑流,从而推动螺旋桨向前或向后。它包括一个旋转的动力驱动轮毂,轮毂上连接着几个径向翼型叶片,使得整个组件绕纵轴旋转。叶片螺距可以是固定的,手动可变到几个设定位置,或自动可变的“恒速”类型。关键词:- 叶片理论、螺旋桨、Cirrus SR-22
8 密尔沃基声称弗洛伊德并未行使其针对 Kenwood、Hilti、Sears Craftsman、Steelex Plus 和 Strike 的权利。Resp. at 23。Roto Zip 在 2002 年 7 月 1 日对弗洛伊德的停止和终止函的回复中指明了这些公司。Meddings Deel. 17。密尔沃基没有提供任何证据证明这些公司当时在美国销售红色刀片,Roto Zip 随后与弗洛伊德达成和解协议,同意停止销售红色路由器钻头。Supp. Kohl Deel.~ 39U) 和 Ex. 23。9 密尔沃基辩称,除了弗洛伊德(以及密尔沃基的红色曲线锯刀片的微量销售)之外,美国顶级锯片制造商均不销售红色刀片,这一事实并不重要。Resp. at 18-19。相反,其他主要行业参与者均不销售红色锯片,这一事实有力地表明,消费者很少接触除弗洛伊德之外的其他红色锯片,因此红色标志保留了其来源识别功能。
I.简介:雨刷是每辆车的关键组成部分,可确保在不利天气条件下驾驶员的可见度。无论是雨,雪,雨夹雪还是灰尘,雨刮叶片在保持清晰的挡风玻璃,增强安全性并提供舒适的驾驶体验方面起着至关重要的作用。制造雨刷叶片涉及一个复杂的过程,该过程将尖端技术,精确的工程和优质材料融合在一起,以生产可靠的产品。制造刮水器叶片需要一个多步骤的过程,其中包括各种材料,设计和质量控制措施。这些步骤通常涉及生产雨刮器叶片组件,组装和严格的测试,以确保在各种条件下的最佳性能。在此雨刷刀片制造简介中,我们将探索键
以下是一个或多个 D E WALT 电动工具和配件的商标:D E WALT®;D E WALT® 徽标;GUARANTEED TOUGH®;VERSA-CLUTCH®;XRP™;XR PACK®;XR2®;XR+™;黄/黑配色方案;紧凑型、XR PACK®、XR2® 和 XR+™ 电池组的接线板/塔式配置的形状;“D”形进气格栅;手柄上的金字塔阵列;工具盒配置;以及工具表面的菱形凸起阵列;MULTI-CUTTER™;TUNE-UP®;RAPID LOAD®;ROCK CARBIDE®;EXTREME DURABILITY™;PILOT POINT®;MAGNETIC DRILL and DRIVE SYSTEM®;SERIES 20®;SERIES 40®;SERIES 60®;圆锯片上的黑色边缘;圆锯片上的黄色边缘;圆锯片上的回旋镖形散热孔;圆锯片上的螺旋形散热孔;圆锯片上的星爆形散热孔;TOUGH CASE™;TOUGH PACK™;GRC™;GRC™ 徽标;GUARANTEED REPAIR COST™;DROP BOX EXPRESS™;D E WALT SERVICE NET™。可能适用其他商标。版权所有© 2004 D E WALT®
以下是一个或多个 DE WALT 电动工具和配件的商标:DE WALT®;DE WALT® 徽标;GUARANTEED TOUGH®;VERSA-CLUTCH®;XRP™;XR PACK®;XR2®;XR+™;黄/黑配色方案;紧凑型、XR PACK®、XR2® 和 XR+™ 电池组的接线板/塔式配置的形状;“D”形进气格栅;手柄上的金字塔阵列;工具盒配置;以及工具表面的菱形凸起阵列;MULTI-CUTTER™;TUNE-UP®;RAPID LOAD®;ROCK CARBIDE®;EXTREME DURABILITY™;PILOT POINT®;MAGNETIC DRILL and DRIVE SYSTEM®;SERIES 20®;SERIES 40®;SERIES 60®;圆锯片上的黑色边缘;圆锯片上的黄色边缘;圆锯片上的回旋镖形散热孔;圆锯片上的螺旋形散热孔;圆锯片上的星爆形散热孔;TOUGH CASE™;TOUGH PACK™;GRC™;GRC™ 徽标;GUARANTEED REPAIR COST™;DROP BOX EXPRESS™;DE WALT SERVICE NET™。可能适用其他商标。版权所有© 2004 DE WALT®
摘要:圆形刀片在锯木厂和其他制造工厂(如轮胎行业)中非常常见。切割过程会导致刀片磨损,从而逐渐降低切割产品的质量,最终可能导致生产线停工。同时,评估刀片的磨损以避免这些质量损失和故障并不容易,因为影响切割过程的因素很多,直接检查磨损并不实际。这项工作提出了开发与生产线相连的数字孪生。孪生包括一个基于生产线生成的数据的磨损模型,因此,它可用于识别刀片的磨损状态以及根据未来的切割计划预测磨损的发展。
摘要 本文介绍了兰卡斯特大学大多数工程专业一年级本科生承担的一个项目,他们的任务是设计、建造和测试一个比例模型风力涡轮机。学生们两人一组,能够就涡轮机上的叶片几何形状和叶片数量做出设计决策。利用熔融沉积成型 (FDM) 增材制造 (AM) 技术,学生们能够通过增材制造生产涡轮叶片,这为大大提高学生可以生产的模型翼型的精度和光洁度提供了机会,并确保了同一轮毂上叶片的几何重复性。它还使学生能够在叶片下侧生产凹面,这在手工生产叶片时几乎是不可能的。使用 AM 技术制造的模型涡轮机的性能明显优于以前用手工方法生产的模型。引入 AM 方法也为这个设计-建造-测试项目提供了额外的教育维度。在这个项目中,学生将学习翼型和简单的空气动力学和力学。该项目向他们介绍了测试和测量方法,以及所使用的特定 AM 技术的优点和局限性。为了进行测试,模型涡轮机安装在风洞中的简单测力计上,允许施加不同级别的扭矩并测量各种空气速度的旋转速度。鼓励学生绘制功率系数与叶片尖端速度比的无量纲性能曲线。然后,他们可以使用这些数字预测具有类似几何形状的全尺寸转子的性能。
燃气涡轮转子的元素图1显示了典型喷气发动机转子的横截面。该发动机由一个带有许多风扇附带的单个轴组成。每个风扇由一个轮毂组成,其中一组叶片从集线器向外延伸。叶片是用异国情调的材料加工的,能够在可能大于1200 o的温度下承受力。刀片通常会灵活地安装。除非转子高速旋转,否则它们不会保持其工作位置,以使离心力克服重力。这些风扇在喷气发动机中被称为“阶段”。这些阶段使用极高的公差将其组装到轴上。平衡喷气发动机转子如果转子完全刚性,则可以通过旋转转子,测量惯性的CG偏移和乘积来纠正其不平衡,然后在两个平面上的每个平面增加校正权重以补偿不平衡。实践中这不起作用。相对于不平衡力,轴的直径较小,因此当它高速旋转时会弯曲。随着速度的增加,测得的不平衡将增加,因为轴的弯曲会导致CG偏移增加。这意味着必须在与不平衡来源相对应的位置进行镇流器校正。这种类型的校正属于称为“柔性转子平衡”的类别。因此,燃气轮机转子是平衡最困难的物体之一。解决问题的解决方案是在将其组装到转子中之前分别平衡每个阶段。如果将叶片组装在集线器中的位置,可以简化平衡每个阶段的任务,从而导致最小的初始不平衡。有两种方法对刀片进行分类:按重量或瞬间。时刻分类会取得最佳平衡,但需要一台特殊的机器来测量瞬间。
摘要:本文介绍了叶片上传感器系统的设计,实现和验证,用于用于低容量风力涡轮机的远程振动测量。自主传感器系统被部署在三个风力涡轮机上,其中一个是在智利南部较远的天气条件下运行的。系统记录了叶片在自由式和边缘方向上的加速度响应,可用于提取叶片动态特征的数据,可用于损伤诊断和预后。所提出的传感器系统显示出可靠的数据采集和从远程位置的风力涡轮机的传输,证明了创建一个完全自主的系统的能力,该系统能够记录数据,以监视和评估无人干预的长时间的风力涡轮机叶片的健康状况。本研究中介绍的传感器系统收集的数据可以作为开发基于振动的实时结构健康监测策略的基础。
