随着抗生素耐药性不断上升到危险水平,我们面临失去抗生素效力的风险。新开发的药物失效速度比过去几十年快得多,而我们新发明的速度却令人担忧地落后。这一瓶颈迫使我们重新评估关于如何使用现有抗生素的战斗策略。治疗药物监测 (TDM) 是一种临床实践,用于测量血液或血浆中或可与血液药物水平相关的其他生物体液中的药物浓度。抗生素治疗的成功在很大程度上取决于能否将抗生素浓度保持在治疗范围内,以适应患者独特的药代动力学/药效动力学 (PK/PD)。然而,在目前的实践中,这个操作窗口是根据数据确定的
培养学生对学习的兴趣被认为具有许多积极的下游效果。大型语言模型已经开辟了新的范围,以生成满足自己利益的内容,但目前尚不清楚这种自定义的方式在多大程度上可以对学习产生积极的效率。为了探索这个新颖的维度,我们进行了一项受试者间研究(n = 272),其具有生成的AI词汇学习应用程序的不同变化,使用户可以个性化他们的学习示例。参与者被随机分配给对照(句子来自先前存在的文本)或实验条件(根据用户的文本输入而生成的sen tence或短篇小说)。虽然我们没有观察到结构之间的学习绩效的不同,但分析表明,生成的AI驱动的环境个性化的个性化阳性的学习动机。我们不知道这些结果与以前的fndings有何关系,并强调了它们对使用生成AI进行个性化学习的新兴费用的意义。
尽管近年来对心理健康的讨论很多,但许多成年人发现很难承认幼儿经历了这种挑战。也许孩子自己是自我审查。我们的研究发现,患有心理健康问题的儿童通常不愿意向成年人寻求帮助。他们担心被审判。他们不想给别人负担。有时,他们根本不信任周围的成年人。“(我的父母)会说,‘别疯了,治疗师是为那些在情感上伤害人们的',他们会认为我(一个)引起注意的人,”另一个12岁的孩子说。即使是寻求帮助的孩子,也发现父母,老师和学校辅导员的担忧也使他们的痛苦恶化了。当他们的孩子试图讨论自己的麻烦时,一些父母完全敌对了。一个孩子告诉我们:“(我的妈妈)在过去的日子里说,没有人帮助她,我很虚弱,要寻求帮助。”一些父母甚至达到了积极阻止孩子获得心理健康服务的程度。这些聊天表明,心理健康挑战可能在孩子的早年时出现,但经常被忽视。父母负责创建安全的空间,并确保孩子获得所需的帮助。可悲的是,他们倾向于错过或误读心理健康困扰的迹象。可以理解的是,父母不像我们应有的那样满足我们孩子的需求。在我们的
摘要我们提出了一种大型语言模型(LLM)的ChatScene-利用LLM的能力来为自动驾驶汽车的安全至关重要方案。给定的非结构化语言指令,代理首先使用LLMS生成文本描述的流量方案。这些SCE-NARIO描述随后被分解为几个子描述,以获取指定的细节,例如行为和车辆的位置。代理然后将文本描述的子筛选性转换为特定于域的语言,然后在模拟器中生成用于预测和控制的实际代码,从而促进了Carla Simulation Envimonment中的不同和复杂场景的创建。我们代理的关键部分是一个全面的知识检索组件,它通过训练包含情景描述和代码对的知识数据库来有效地将特定的文本描述转化为相应的特定领域代码段。广泛的实验结果强调了Chatscene在提高自动驾驶汽车安全性方面的功效。对于Intance,ChatScene产生的方案显示,与最先进的基线相比,在针对不同的基于强化的基于学习的自我车辆进行测试时,碰撞率增加了15%。此外,我们表明,通过使用我们生成的安全 - 关键方案来微调不同的基于RL的自主驾驶模型,它们可以降低碰撞率9%,超过Cur-Current Sota方法。代码可在https://github.com/javyduck/chatscene上找到。ChatScene有效地弥合了交通情况的文本描述与实际CARLA模拟之间的差距,从而提供了一种统一的方式,以方便地生成安全至关重要的方案,以进行安全测试和改进AVS。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
菲律宾政府的数据显示,该国每天产生约 43,684 吨垃圾,其中仅塑料垃圾就达 4,609 吨。世界野生动物基金会 2020 年的一份报告提供了令人震惊的统计数据,表明菲律宾产生的塑料垃圾总量中,只有 33% 得到妥善收集并在卫生垃圾填埋场处理,而 35% 则泄漏到环境中。此外,只有 9% 得到回收利用 [3]。菲律宾实施了“零废物管理”法,即《固体废物管理法》,作为一项解决废物处理不当问题的国家计划 [4]。然而,其有效性有限。为了缓解这一问题,一些地方政府部门实施了处罚措施,并发起了清理活动和在公共区域放置垃圾箱等活动。
摘要 - 质量自治有望彻底改变广泛的工程,服务和流动性行业。超密集的自主代理之间的协调复杂的沟通需要新的人工智能(AI)在第五代(5G)和第六代(6G)移动网络中实现无线通信服务的管弦乐队。在特定的安全和任务关键任务中,合法需要透明的AI决策过程,以及一系列人类最终用户(消费者,工程师,法律)的量化质量质量质量(QOT)指标。我们概述了6G的值得信赖的自主权的概念,包括基本要素,例如可解释的AI(XAI)如何产生信任的定性和定量方式。我们还提供了与无线电资源管理和相关的关键绩效指标(KPI)集成的XAI测试协议。提出的研究方向将使研究人员能够开始测试现有的AI优化算法,并开发新的算法,认为应该从设计到测试阶段内置信任和透明度。
我们正在寻找一位勤奋,顽强而充满活力的科学领导者,以加入Harris Academy Wimbledon,在这一兴奋之中。科学的领导者将是一位经验丰富的专家,持有QTS(或同等学历)和相关的本科学位,您将有能力从KS3到KS5进行教学。我们正在寻找具有良好的沟通能力,具有良好的技能,不仅是学校社区,而且是更广泛的社区。
档案在社会建设和发展中发挥着至关重要的作用。人类非常信任档案,依靠档案制定公共政策并保存语言、文化、自我认同、观点和价值观。然而,在当前对记录和档案进行分类和可发现性的过程中,某些声音和观点仍然难以捉摸。在本文中,我们探讨了集中式、正当程序档案系统对边缘化社区的影响和影响。有强有力的证据证明,在追求全面性、公平性和正义的同时,需要渐进式设计和技术创新。在改善档案实践以及当今整个社会的进步和繁荣方面,意向性和全面性是我们最大的机会。在当今技术和信息时代的支持下,意向性和全面性是可以实现的。在档案过程中重新开放、质疑和/或有目的地纳入他人的声音是我们在论文中提出的意图。我们列举了一些边缘化社区的例子,他们继续领导“社区档案”运动,努力恢复和保护自己的文化身份、知识、观点和未来。总之,我们提出了设计和人工智能主导的技术考虑因素,值得进一步研究,以努力弥补系统性差距并建立强大的档案流程。
除了免疫检查点抑制剂的快速发展,自组装免疫治疗药物的研发也呈现井喷态势。根据免疫靶点,传统肿瘤免疫治疗药物分为五类,即免疫检查点抑制剂、直接免疫调节剂、过继细胞治疗、溶瘤病毒和癌症疫苗。此外,精准度和环境敏感性更高的自组装药物的出现为肿瘤免疫治疗提供了一种很有前景的创新途径。尽管肿瘤免疫治疗药物研发进展迅速,但所有候选药物都需要进行临床前安全性和有效性评估,而常规评估主要采用二维细胞系和动物模型,这种方法可能不适合免疫治疗药物。而患者来源的异种移植和类器官模型保留了肿瘤病理异质性和免疫性。