对心肌细胞的自动通道和转运蛋白的整合以及固有性的固有特性对于整个心肌的电动脉冲和正常心律的产生是必要的。当其中任何一个,脉冲产生或正常传导动作电位的正常电生理过程会破坏患者心律不齐。在存在结构性心脏病,心肌梗死和代谢性疾病的情况下,获得的肢体疾病的风险显着增加。大多数心律不齐是根据它们产生冲动或源于心肌的位置的速率分类的。这些包括心房效果(AF),心房,心室心动过速(VT),上室性心动过速(SVT),心室纤维和心胸术(1)。及其在心房中的快速且不稳定的电信号,AF是最普遍的类型,导致收缩无效。AF患者出现呼吸急促,疲惫,呼吸症和中风风险更高。抗凝治疗可预防血栓栓塞事件以及抗心律失常药物,是常见的管理策略。心室心律不齐引起的突然心脏骤停导致患者失去意识。在这些情况下,立即进行心肺复苏(CPR)和降低符号对于生存至关重要(2)。全球估计表明,心律不齐影响了世界近2%的人口,并且与显着的社会经济负担有关。根据最近的研究,机器学习算法可能会增强长期心律不齐的风险地层。移动健康技术的开发提供了以客户为中心的医疗保健机会(3)。在这种意见中,说明了当前和即将到来的MHealth技术治疗心律不齐的潜在应用。
对心肌细胞的自动通道和转运蛋白的整合以及固有性的固有特性对于整个心肌的电动脉冲和正常心律的产生是必要的。当其中任何一个,脉冲产生或正常传导动作电位的正常电生理过程会破坏患者心律不齐。在存在结构性心脏病,心肌梗死和代谢性疾病的情况下,获得的肢体疾病的风险显着增加。大多数心律不齐是根据它们产生冲动或源于心肌的位置的速率分类的。这些包括心房效果(AF),心房,心室心动过速(VT),上室性心动过速(SVT),心室纤维和心胸术(1)。及其在心房中的快速且不稳定的电信号,AF是最普遍的类型,导致收缩无效。AF患者出现呼吸急促,疲惫,呼吸症和中风风险更高。抗凝治疗可预防血栓栓塞事件以及抗心律失常药物,是常见的管理策略。心室心律不齐引起的突然心脏骤停导致患者失去意识。在这些情况下,立即进行心肺复苏(CPR)和降低符号对于生存至关重要(2)。全球估计表明,心律不齐影响了世界近2%的人口,并且与显着的社会经济负担有关。根据最近的研究,机器学习算法可能会增强长期心律不齐的风险地层。移动健康技术的开发提供了以客户为中心的医疗保健机会(3)。在这种意见中,说明了当前和即将到来的MHealth技术治疗心律不齐的潜在应用。
这项工作着重于开发一种创新的移动解决方案,该解决方案可以增强身体和视觉障碍的人的独立性和可访问性。提议的语音控制轮椅配备了最新的语音识别技术,使用户能够发出简单的语音命令,例如“向前”,“向后”,“左”,“左”,“右”和“停止”和“停止”来控制其运动。该系统结合了强大的麦克风阵列和噪声策略算法,以确保在包括嘈杂设置在内的各种环境中准确的语音识别。对于盲人用户,轮椅与障碍物检测传感器和听觉反馈系统集成在一起,这些传感器和听觉反馈系统提供了实时的导航援助并确保运动过程中的安全性。轮椅的设计优先考虑用户友好性,对个人需求的适应性以及负担能力,使其可容纳更广泛的人口。实施涉及使用针对区域口音和不同语言模式量身定制的数据集培训语音识别模型,以增强包容性。障碍检测机制利用超声波和红外传感器,而听觉反馈系统则采用综合语音警报来方向指导。在受控和实际情况下对身体残疾和盲人进行广泛的测试表明,导航效率提高,降低对看护者的依赖以及更高的用户满意度。该项目弥合了技术与可访问性之间的差距,使用户能够重新获得对日常生活的自主权和信心。通过利用先进的语音控制系统和安全性增强,该项目彻底改变了针对残疾人的移动解决方案,为他们提供了有效与环境互动的变革性工具。
摘要:SnO 2 基钠离子电池在钠化/脱钠过程中通常会出现容量衰减较快的问题,这是由于Sn的聚集和裂解以及Na 2 O的不可逆形成造成的。针对这一问题,我们设计了一种基于微波等离子体工艺制备的三元SnO 2 @Sn核壳结构,修饰于氮掺杂石墨烯气凝胶上(SnO 2 @Sn/NGA)。转化成的Na 2 O可以防止Sn的团聚,从而在循环过程中稳定结构。Na 2 O与Sn之间的紧密接触确保了Na+离子向Sn核的扩散,并可逆地转化为Sn SnO 2 。此外,等离子体对NGA的脱氧作用提高了其石墨化程度和电导率,从而大大提高了电极的倍率性能。结果,SnO 2 @Sn/NGA负极在100 mA g -1 时表现出448.5 mAh g -1 的高首次放电容量。重要的是,这种独特的纳米混合电极设计可以扩展到锂和钠离子电池的先进阳极材料。
*通信:james.utterback@sorbonne-universite.fr摘要实现具有内置纳米级热流动性的可调功能材料是一个重大挑战,可以推进热管理策略。在这里,我们使用时空分辨的热反射率在各向异性AU纳米晶体的自组装超晶体中可视化侧向热传输各向异性。相关电子和热反射显微镜表明,纳米尺度的热量主要沿各向异性纳米晶体的长轴流动,并且在晶粒边界和弯曲的组件上进行了这种情况,而弯曲的组件则干扰热流动。我们通过组成纳米棒的长宽比来精心控制各向异性,并且它超过了纳米双锥体超晶体的纵横比和某些纳米排列。有限元模拟和有效的培养基建模合理地将出现的各向异性行为合理化,以简单的串联电阻模型,进一步提供了一个框架,以估算热各向异性作为材料和结构参数的函数。胶体纳米晶体的自组装有望在使用这种重要材料类别的广泛应用中引导热流的有趣途径。关键字纳米级热传输,胶体纳米晶体,超晶,各向异性,热质融合,时空显微镜
Shalini Chandra 是新加坡 SP Jain 全球管理学院的副教授。加入 SP Jain 之前,她曾在新加坡南洋理工大学 (NTU) 担任研究员,并拥有该大学的博士学位。她的研究成果发表在多家国际同行评审期刊上,如《MIS Quarterly》(MISQ)、《信息系统协会杂志》(JAIS)、《信息系统杂志》(ISJ)和《AIS 通讯》(CAIS)等。她还在信息系统领域的几场顶级会议上展示了她的研究成果,如国际信息系统会议 (ICIS)、管理学院 (AOM)、亚太信息系统会议 (PACIS) 和美洲信息系统会议 (AMCIS),以及国际通信协会 (ICA) 等顶级通信会议。她的研究兴趣包括技术支持的创新和新的协作技术、新技术的采用和接受、技术的阴暗面和社交媒体。
锂离子电池(LIBS)显着影响了日常生活,在各种行业中找到了广泛的应用,例如消费电子,电动汽车,医疗设备,航空航天和电动工具。但是,由于与其他电池相比,由于对LIB的需求迅速增加,由于对LIB的需求迅速增加,因此它们仍然妨碍其广泛的应用,因此它们仍然面临问题(即,由于树突繁殖,制造成本,随机孔隙和基本和平面几何形式引起的安全性。添加剂制造(AM)是一种在储能设备中创建精确和可编程结构的有前途的技术。本综述首先总结了基于每种AM技术的当前趋势和局限性的光,素描,粉末和基于喷射的3D打印方法。本文还深入研究了3D打印的电极(阳极和阴极)和固态电解质,用于LIBS,强调当前的最新材料,制造方法和性能/性能/性能。此外,AM在电化学能源存储(EES)应用中的当前挑战,包括有限的材料,低处理精确度,用于完整电池打印的代码/制造概念,机器学习(ML)/人工智能(AI),用于处理优化和数据分析和数据分析,环境风险,以及4D打印的电位。
睡眠障碍很普遍,并且会影响数百万的健康和生产力。传统的睡眠监控系统是复杂的,每天使用不便。我们的研究介绍了一种智能服装,该服装集成了应变传感器阵列和深度学习,以便在舒适的环境中准确监视睡眠方式。这种耐用,伪像 - 弹性和定位 - 免费诊断E-纺织品可以以高准确性和适应性为六个健康,副健康和不健康的睡眠状态分类,从而使其比现有的可穿戴技术取得了重大进步。凭借这些独特的功能,提出的解决方案标志着睡眠医学和消费者健康方面的一步,通过提供对睡眠健康的持续不感知的监测,最终改善对睡眠障碍的理解和管理。