frqwh [wv dqg ixqfwlrrqV dv zhoo dv wkh hphujhqfh ri qhz vsolqwhuv lq wkhlu irupdwlrq,q sdewlfxodu wkh sdshu dqdo \ dqdo \] dqg txdolwdwlyh ylhzsrlqwv 7kh dsssurdfk lv erwk gdwd gdwd gdwd gulyhq dqg frusxv edvhg)ru wkhh dqdo \ vlv wkh wkh wkh wkh vwxg rqoolqh yhuvlrrq ri wkh牛津英语dactari> 2('@ dv zhoo dv frusrud ri(当代美国英语的qjolvk l h corpus of当代英语>&2@ dqg web frusxv上的新闻 VHDUFK LQ WKH 2 ('DQG Fryhuv D Wlph Vsdq Zklfk Whvwlilhv Wr Wkh Fxuhqw Uhohydqfh Dqg Lqfuhdvlqj Lqflghqfh Ri Wkh Eohqlqj Surfhvv DV D Zrug IRUPDWLRRQ PHFDQLVP IRU wkh fuhdwlrq ri qhz zrug lq(qjolvk 7kh 2('lqghhgg vkrzv wkdw wkdw wkh qxpehu qhz hqwuulhv e \ eohqglqj grxe grxe grxehv lq lq lq lq l h i i i i ichulhv fuhd LQVDDQFHV LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ LQ DQG LQ DV dv vkrzq lq)ljxuhb div div>
NDI-C5 12.6/1.4 428 71 / 54 520 518 2.08 − 5.86 − 3.77 NDI-C6 18.0/1.3 425 55 520 518 2.08 − 5.86 − 3.78 NDI-C7 28.6/2.0 425 48 521 520 2.08 − 5.86 − 3.78 P(NDI2OD-T2) 157.5/2.0 i 448 312 701 705 1.55 − 6.22 − 4.69 a) 四氢呋喃 (THF) 作为洗脱液,40 °C。 b) 分解温度。 c) 熔化温度。 d) 氯仿溶液 e) 滴铸薄膜在玻璃基板上,在 50°C 下退火。f) 根据起始吸收 𝐸 𝑔 计算
Interface Optimization via Fullerene Blends Enables Open-Circuit Voltages of 1.35 V in CH 3 NH 3 Pb(I 0.8 Br 0.2 ) 3 Solar Cells Zhifa Liu # , Johanna Siekmann # § , Benjamin Klingebiel, Uwe Rau, and Thomas Kirchartz* § Dr. Z. Liu, J. Siekmann, Dr. B. Klingebiel, Prof. U. Rau,T。KirchartzIek5-Photovoltaik教授,ForschungszentrumJülich,52425Jülich,德国#作者贡献Z.L.和J.S.同等贡献。*教授。 T. Kirchartz工程学院和Cenide,Carl-Benz-STR的Duisburg-Essen大学。199,47057德国杜伊斯堡§相对作者电子邮件:t.kirchartz@fz-juelich.de电子邮件:
Sudarshan Shaw是印度艺术家和传播设计师。他在美国国家时装技术研究所学习,并在兰桑堡国家公园(Ranthambore National Park)的毕业项目中爱上了野生世界。促使他探索更多的印度森林,并与当地社区进行互动,以帮助他对民间艺术的历史,创造力和有效性进行教育。今天,他说:“我自豪地保留了对人们的故事,野生智慧和森林法律的偏见”。,这样做希望“将土著艺术作为土地的语言,为土地成为土地的语言”。
如今,材料必须满足高机械要求,同时在生产中具有成本效益。在塑料行业中,这是由所谓的聚合物混合物实现的,这是至少两个具有不同特性的聚合物的混合物。结果是低成本,同时为各自的应用量身定制材料。确保良好的机械性能,均匀的熔体,即必须在异质混合物中实现不同组分的均匀分散和分布。因此,塑料处理中的混合过程非常重要。但是,为了评估混合过程,必须以合适的方式进行测量,才能根据材料和过程属性进行透彻了解混合过程。这是设计新的混合元件并确保在处理过程中均匀融化的唯一方法,从而提供具有高机械要求的新材料。一种潜在的工具,不仅在定性上,而且在定量上,计算机断层扫描可能是一项有用的技术。但是,由于化学相似的聚合物结构,由一些光元素(C,H,N,O等组成。),不同塑料化合物的X射线衰减特性几乎相同,这就是为什么通过计算机断层扫描进行分析的原因。在这项工作中,通过使用异源聚丙烯(PP) - 聚苯乙烯(PS)混合来研究两种不同的方法来解决此问题。首先,使用氯仿将PS从PP中溶解,其次,将硫酸盐和硫酸钡颗粒添加到PS中,然后将其与PP混合。以这种方式,可以利用微型层析成像分析两个混合组分的体积分布,并可以量化混合物质量。
2014 年,DLR 开始研究由一氧化二氮和碳氢化合物组成的预混合单推进剂。这些推进剂具有良好的特性,因为它们无毒、由低成本的成分组成,可提供高 Isp,并且由于自加压操作可以简化推进系统。最初,DLR 选择了一氧化二氮 (N 2 O) 和乙烯 (C 2 H 4 ) 的混合物。在项目过程中,一氧化二氮和乙烷 (C 2 H 6 ) 的混合物也被纳入研究活动。这些活动是 DLR 未来燃料项目的一部分,分为五个主要部分:1) 研究火箭燃烧室中推进剂的燃烧行为,2) 测试和开发火焰阻火器,3) 开发和简化反应机制,4) 对燃烧过程进行数值模拟,5) 基本混溶性研究。该项目的重点是前三个任务,而后两个任务用于扩大对以下方面的了解:1、美国航空航天局成员,推进剂部设施组组长。2、推进剂部学生研究员。3、美国航空航天局成员,推进剂部研究工程师。4、推进剂部学生研究员。5、美国航空航天局成员,推进剂部研究工程师。6、推进剂部学生研究员。7、推进剂部负责人。美国航空航天局高级会员。8、空间推进研究所所长。9、化学动力学与分析系博士后研究员。10、化学动力学与分析系化学动力学建模组组长。11、化学动力学与分析系研究科学家。12、化学动力学与分析系博士后研究员。13、化学动力学与分析系实验反应动力学负责人。14、低碳工业过程研究所代理所长,前化学动力学系主任。
文章历史:将生物燃料与石油柴油机的混合对于环境保护是必不可少的,具有相当大的摩擦学品质,这些品质与压缩 - 点燃(CI)发动机的寿命相同,在节能方面有助于节省。这项工作的目的是通过在美国测试和材料(ASTM)D 4172标准的美国测试和材料协会(ASTM)标准的4孔摩擦仪中研究石油柴油机中纳米辅助的laxmitaru-脂肪酸甲酯(成名)混合物。实验涉及B-10(10%的生物柴油与石油柴油混合),B-20和B-30变体以及整齐的石油柴油。纳米硅二氧化硅(SIO 2)以不同的浓度为0.20%,0.50%,0.75%和1%的二氧化硅(SIO 2),重量为laxmitaru-fame。与整洁的柴油(B0)相比,摩擦系数(COF)的摩擦系数(COF)降低了75%,磨损降低了55%(B0)。通过扫描电子显微镜(SEM)分析了实验球的磨损模式,这表明由于高度稳定的分散体,纳米颗粒在界面上的材料插入和结果修补。
AB 先进生物燃料 AFDC 替代燃料数据中心 AFV 替代燃料汽车 BBD 生物质柴油 BIP 生物燃料基础设施伙伴关系 CAA 清洁空气法案 CAFE 企业平均燃油经济性 CARD 农业和农村发展中心 CaRFG3 加州第三阶段新配方汽油 CB 纤维素生物燃料 CCC 商品信贷公司 CNG 压缩天然气 EPA 美国环境保护署 EPAct 能源政策法案 EIA 美国能源信息署 EV 电动汽车 FCEV 氢燃料电池电动汽车 FFV 灵活燃料汽车 GHG 温室气体 HBIIP 高混合基础设施激励计划 HEV 混合动力电动汽车 ICE 内燃机 MTBE 甲基叔丁基醚 MY 车型年份 NACS 美国便利店协会 PHEV 插电式混合动力电动汽车 RF 可再生燃料 RFS 可再生燃料标准 RIN 可再生识别号 RVO 可再生量义务 RVP 雷德蒸气压 SRE 小型炼油厂豁免 USDA 美国农业部 UST 地下储罐 VOC 挥发性有机化合物
摘要:我们结合线性粘弹性测量和建模来探索相同分子量的环状和线性聚合物共混物在环组分体积分数较低(0.3 或更低)范围内的动力学。由于线性链的运动,应力松弛模量受到环和线性组分的约束释放 (CR) 的影响。我们开发了一种基于 CR 的环-线性共混物模型,该模型可以预测环组分分数较低范围内的应力松弛函数,与实验结果高度一致。被线性链缠结所困的环只能通过线性链诱导的 CR 来松弛,而且环的松弛速度比线性链慢得多。预计在环重叠体积分数 ϕ R * 下,共混物的相对粘度 η ( ϕ R * )/ η L 相对于线性熔体粘度 η L 的增加与环分子量 M w,R 的平方根成比例增加。我们的实验结果清楚地表明,通过添加少量环状聚合物,可以同时提高线性聚合物熔体的粘度和结构松弛时间。这些结果不仅为 CR 工艺的物理原理提供了根本性的见解,还提出了通过添加环状聚合物来微调线性聚合物流动性能的方法。
图 1.通用航空飞机燃油消耗历史值和预测值。日历年包括 2000 – 2020 年 ……………………………………...……………... 2 图 2。航空相关乙醇事件的时间表 ………………………………… 5 图 3。J.P. Instruments EDM-800 手册中的“最佳动力”(蓝色)和“最佳经济”(红色)混合设置 …………………………………………… 11 图 4。试验台飞机 (N152BU) …………………………………………………… 16 图 5。试验台动力装置,(a) 右舷显示气缸 1 和 3 (b) 左舷显示气缸 2 和 4 …………………………………………... 17 图 6。从推荐的倾斜度(25°F 富峰)下载的原始数据2007 年 3 月 4 日进行的 E40 航班(EGT)…………………………………… 19 图 7。TSTC 韦科机场 (KCNW) 的机场图………………………….. 23 图 8。从 TSTC 机场 (CNW) 北出发(灰线)和南出发(粉红线)的航线规则 ………………………………………………... 24 图 9。EGT #3 安装位置,(a) 块内区域表示试验台发电厂 #2 排气管的位置和 (b) #2 排气管上 EGT 探头的特写 ……………………………………………………………………...... 26 图 10。燃油校准程序正在进行中,(a) 校准的燃油集油罐和 (b) 球阀延伸到燃油管路,可在校准过程中调节燃油流量……………………………………………………………… 28 图 11。全油门时随着乙醇含量增加,转速增加趋势 ...................................................................................................................................... 33 图 12。“推荐混合”空燃比下的典型巡航性能参数 …………………………………………………………………………….40 图 13。全油门时随着乙醇含量增加,转速增加趋势…... 44 图 14。“峰值 EGT”空燃比下的典型巡航性能参数 ……………………………………………………………………….. 50