2。快速的技术变革继续造成针对妇女和女孩的暴力行为的新风险。在秘书长先前的报告中所研究的关于消除各种形式对妇女和女孩的暴力行为的努力的强化(A/77/302),对妇女和女孩的暴力在整个在线和离线连续体中越来越多。肇事者正在使用一系列数字工具和平台来造成基于性别的伤害,虐待,仇恨,言论,控制,骚扰和暴力,而在线空间中厌恶女性的内容的扩散,包括“ manosphere”(同上,第8),越来越多地渗透到主流平台,使有害的男子气概和歧视性社会规范永存,这会促进对妇女和女孩的暴力行为。2最近的生成人工智能(AI)的增长也通过加强和加强对妇女和女孩的暴力行为产生了影响,这些规范证明了对妇女和女孩的暴力辩护,借口和正常于暴力,并促进基于图像的虐待的繁殖。3有证据表明,此类趋势除了影响在线暴力的犯罪外,还与离线暴力有关,包括与性别相关的杀戮或女性。4
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
- 新汉普郡:通过一项法律,要求所有氟化水都因健康问题而被标记。- 田纳西州:韦恩斯伯勒和波特兰等城市已停止氟化。- 佛罗里达州:几个城市拒绝了氟化,理由是儿童大脑发育风险。- 夏威夷:由于安全问题,从未执行全州范围内的氟化任务。- 纽约和新泽西州:由于公众需求增加,几个城镇已清除了氟化物。- 加拿大和欧洲:包括德国,瑞典,荷兰和瑞士在内的许多国家完全禁止氟化,并指出有更有效的方法可以改善牙齿健康。
随着对电动汽车,电池的需求以及其生产所需的关键矿物质的需求,在整个欧洲持续增长,大量投资正在流入电池GIGAFACTOIRE和其他关键组件设施。这些投资是欧洲雄心勃勃的发射电池生产和加速运输电气化的任务。实现这一目标不仅需要技术和专业知识,还需要进行业务专业知识来扩展制造业和熟练的劳动力以在全球范围内竞争。当今中国公司是电池技术和邻近供应链的全球领导者。因此,整个欧洲大量的电池投资来自中国公司(几乎是三分之一),参与中游活动(例如阴极生产)也就不足为奇了。
申请说明:将“至少”提交以下列出的文件。如果您无法合理获得任何所需文件,我们将在文件处提交一封简短的信函,说明缺少的文件,并简要说明证明该包符合资格所需的文件。FTSMCS 系统不允许您在每个类别中上传文件之前继续操作。如果您的 ERB 上显示的 ASVAB 分数不是最新的,您必须在申请中提交最新的 ASVAB 成绩单。任何未包括新分数且不符合最低分数要求的申请人将被取消资格。!!!!所有申请人都将使用 FTSMCS 网站(CAC 启用)申请和提交申请。!!!! 链接和说明位于密西西比州职业页面底部,标题为 FTSMCS 申请人说明。除非系统无法运行(即因维护而停机),否则将没有其他途径提交申请。如果您对申请有任何疑问,请联系 MSG Christopher Gurley,电话:601-313-6363 christopher.b.gurley.mil@army.mil,或 SFC Jaime Grammar,电话:601-313-6341 jaime.l.grammar.mil@army.mil。
生成的3D部分组装涉及了解零件关系,并预测其6-DOF姿势,用于组装逼真的3D形状。先前的工作通常集中在各个部分的几何形状上,忽略了整个物体的零件。利用两个关键的观察:1)超级部分姿势提供了有关零件姿势的强烈提示,而2)由于较少的超级部分,预测超级零件的姿势更容易,我们提出了一个零件 - 整个层次结构消息传递网络,以实现有效的3D零件组件。我们首先通过在没有任何语义标签的情况下对几何相似部分进行分组,从而引入超级零件。然后,我们采用零件整体的层次编码器,其中超级零件编码器预测基于输入部分的潜在超级零件姿势。随后,我们使用潜在姿势转换点云,将其馈送到零件编码器中,以汇总超级零件信息和有关零件关系的推理以预测所有部分姿势。在培训中,仅需要地面零件姿势。在推断期间,超级零件的预测潜在可增强可解释性。Partnet数据集上的实验结果表明,我们的方法可以部分地达到最新的功能和连接精度,并实现可解释的层次结构组件。代码可在https://github.com/pkudba/3dhpa上找到。
镍采矿和精炼带有一定的碳足迹,但是有一些解决方案可以改善这种环境影响。温室气体(GHG)的排放量在硫酸镍生产地点之间的差异很大,具体取决于多种因素,包括部署的能源和生产技术。Minviro的分析表明,可以使用可再生能源的操作,并使用水透明术技术(例如Bioheap Leaching和压力氧化)具有最低的碳足迹。具体来说,比较六个硫酸盐生产路线表明,位于加拿大和芬兰的最佳性能设施的排放水平分别比行业平均水平低70%和63%。在相对端,将乳液的矿石加工成镍铁(NPI)到哑光到硫酸镍的产生的排放量是行业平均水平的5倍,而在印度尼西亚越来越流行的高压酸浸出(HPAL)途径几乎是行业平均值的两倍。
摘要:胶体纳米晶体 (NC) 的自组装在固态材料的多尺度工程中具有巨大前景,通过这种技术,原子工程 NC 构件被排列成具有协同物理和化学性质的长程有序结构 超晶格 (SL)。迄今为止,报告主要集中在球形 NC 的单组分和二元系统上,产生的 SL 与已知的原子晶格同构。通过组合各种形状的 NC,可以预期获得远远超出已知晶格范围的更大结构空间。本文报道了空间稳定的 CsPbBr 3 纳米立方体 (5.3 纳米) 与圆盘状 LaF 3 NC (直径 9.2 - 28.4 纳米,厚度 1.6 纳米) 共组装成二元 SL 的过程,产生了具有 AB、AB 2 、AB 4 和 AB 6 化学计量的六柱状结构,这在之前和我们的参考实验中均未观察到,参考实验中使用由球体和圆盘组成的 NC 系统。本文使用填充密度计算合理化了立方体形状的这种惊人效果。此外,在尺寸相当的纳米立方体(8.6 纳米)和纳米盘(6.5 纳米、9.0 纳米、12.5 纳米)系统中,还观察到了其他非柱状结构,例如 ReO 3 型 SL,其特征是盘和立方体的紧密混合和面对面排列,纳米立方体的面心立方或简单立方亚晶格,以及每个晶格位置有两个或三个盘。层状和 ReO 3 型 SL 采用大型 8.6 纳米 CsPbBr 3 NC,表现出集体超快光发射 超荧光 的特征,源自激发态发射偶极子的相干耦合。关键词:胶体纳米晶体、纳米晶体形状、自组装、二元超晶格、电子显微镜、卤化铅钙钛矿、超荧光 I
申请说明:将“至少”提交以下列出的文件。如果您无法合理获得任何所需文件,我们将在文件处提交一封简短的信函,说明缺少的文件,并简要说明证明该包符合资格所需的文件。FTSMCS 系统不允许您在每个类别中上传文件之前继续操作。如果您的 ERB 上显示的 ASVAB 分数不是最新的,您必须在申请中提交最新的 ASVAB 成绩单。任何未包括新分数且不符合最低分数要求的申请人将被取消资格。!!!!所有申请人都将使用 FTSMCS 网站(CAC 启用)申请和提交申请。!!!! 链接和说明位于密西西比州职业页面底部,标题为 FTSMCS 申请人说明。除非系统无法运行(即因维护而停机),否则将没有其他途径提交申请。如果您对申请有任何疑问,请联系 MSG Christopher Gurley,电话:601-313-6363 christopher.b.gurley.mil@army.mil,或 SFC Jaime Grammar,电话:601-313-6341 jaime.l.grammar.mil@army.mil。
