摘要 简介 在脓毒症治疗中,实现和维持有效的抗生素治疗至关重要。然而,由于脓毒症患者之间存在很大差异,最佳抗生素剂量面临挑战。治疗药物监测 (TDM) 是目前的黄金标准,缺乏初始剂量调整和全球可用性。即使进行每日 TDM,抗生素血清浓度 (ASC) 也经常偏离治疗范围。本研究通过开发基于机器学习 (ML) 的 ASC 预测模型来解决这些挑战,该模型能够处理可变数据输入并涵盖各种临床、实验室、微生物学和蛋白质组学参数,而无需每日 TDM。方法 这项前瞻性观察研究是在德国大学医院重症监护室进行的。符合条件的脓毒症患者在 24 小时内接受哌拉西林/他唑巴坦 (n=100) 或美罗培南 (n=100) 持续抗生素治疗。排除标准包括拒绝、怀孕、哺乳和严重贫血 (血红蛋白 <8 g/dL)。在第 1-8 天和第 30 天或出院时从患者身上采集 TDM 血液样本以及临床和实验室参数。预测第 1 天至第 8 天之间 ASC 的 ML 模型作为主要和关键次要终点。我们将使用收集的数据开发多方面的基于 ML 的算法,旨在优化脓毒症中的抗生素剂量。我们的双向方法涉及创建两种不同的算法:第一种算法使用常规临床参数关注预测准确性和普遍性,而第二种算法利用扩展数据集,其中包括目前尚未充分探索且在标准临床实践中不可用但可能有助于提高精度的大量因素。最终,这些模型有望集成到患者数据管理系统中的临床决策支持系统中,促进对败血症的自动化、个性化治疗建议。道德与传播 该研究获得了波鸿鲁尔大学医学院伦理委员会的批准(编号23-7905)。研究结果将是
机器学习操作 (MLOps) 是一门涉及大规模生产、监控和维护人工智能 (AI) 和机器学习 (ML) 模型的学科,应用于医疗保健可以促进 AI/ML 支持的医疗保健工具从研究向可持续部署的转变。1–3 遵守 MLOps 最佳实践可以解决部署到临床工作流程中的 AI/ML 工具所面临的持续挑战,在这些工作流程中,模型通常在通用性、集成性和稳健性方面存在困难。随着 AI 法规的不断发展,例如美国卫生与公众服务部民权办公室的最终裁决要求医疗保健提供者确保其 AI/ML 工具不具有歧视性,4 医疗保健领域的 MLOps 越来越需要优先考虑健康公平。医疗保健领域的 MLOps 将核心原则置于特定环境中,以满足医疗保健组织对 AI/ML 部署的需求。1–3 我们重点介绍了扩大公平健康 AI/ML 模型部署和建立问责措施 5 的关键原则和考虑因素,以系统地消除健康不平等并遵守 AI/ML 法规(表 1)。医疗保健中的 MLOps 原则之一是优化医疗 AI/ML 工具的临床工作流程集成,以便提供医疗服务。此外,确保模型可供所有患者群体使用并适应不同的临床环境至关重要。优先考虑健康公平的合适功能是进行临床工作流程分析,以确定公平执行 AI/ML 以进行患者护理所需的关键利益相关者、流程和资源。确定的路径为工作流程编排组件的开发提供了信息,这些组件是医疗保健组织 MLOps 管道的基础。
引言 全球卫生领域,特别是在受冲突影响的地区,面临着多重危机,其特点是严重的医护人员 (HCW) 短缺和分配不当。例如,在叙利亚,由于十多年的冲突,数以万计的医护人员被迫离开叙利亚。1 2019 年世界银行和联合国难民事务高级专员公署 (UNHCR) 的一份报告指出,从 2010 年到 2018 年,叙利亚的医生数量从每 1000 人 0.529 人减少到 0.291 人。2 在重症监护病房 (ICU)、肿瘤科、放射科和实验室服务等专业领域,这种稀缺性甚至更为严重。在这种情况下,利用人工智能 (AI) 不仅有益,而且必不可少,特别是在可以利用数据驱动的决策来改善临床护理的专业领域。在这篇评论中,我们探讨了人工智能在直接医疗服务中的应用以及人道主义领域的更广泛考虑,包括潜在的相关风险。
摘要 目的 本研究旨在根据《综合试验报告标准——人工智能》(CONSORT-AI)指南评估医疗保健领域人工智能(AI)随机对照试验(RCT)的报告质量。设计 系统评价。 数据来源 我们在 PubMed 和 EMBASE 数据库中搜索了 2015 年 1 月至 2021 年 12 月报告的研究。 资格标准 我们纳入了以英文报告的使用人工智能作为干预措施的 RCT。排除了方案、会议摘要、机器人研究和与医学教育相关的研究。 数据提取 两名独立评分员使用包含 43 个项目的 CONSORT-AI 清单对纳入的研究进行评分。将结果制成表格并报告描述性统计数据。 结果 我们筛选了 1501 篇潜在摘要,其中 112 篇全文文章经过资格审查。共纳入 42 项研究。参与者人数从 22 人到 2352 人不等。所有研究仅完整报告了 CONSORT-AI 项目中的两项。超过 85% 的研究报告了五项不适用。19% (8/42) 的研究未报告超过 50% (21/43) 的 CONSORT-AI 清单项目。结论 AI 中 RCT 的报告质量不佳。由于现有 RCT 的报告各不相同,因此在解释某些研究的结果时应谨慎。
《BMJ 健康与护理信息学》发表了两篇编辑精选论文,重点介绍了人工智能 (AI) 以及在系统层面正确评估与医疗保健改进相关的 AI 驱动的实施工具的挑战。Kueper 等人 1 的研究重点关注加拿大安大略省初级保健环境中的 AI 挑战。他们提供了经验教训和指导,以指导未来使用 AI 进行资源管理来改善初级保健。作者与多方利益相关者进行了协作磋商。确定了九个优先事项,围绕系统级考虑因素,例如实践环境、组织和致力于医疗服务提供和护理质量的绩效领域。该论文强调了对公平和数字鸿沟、系统容量和文化、数据可访问性和质量、法律和道德考虑、以用户为中心的设计、以患者为中心以及对 AI 应用的适当评估等关注。并回顾了 AI 在学习型健康系统框架中的作用。应安全、有意义地开发和应用人工智能模型,以优化系统性能和社会福祉。2 此外,人工智能提供预防和先发制人的医疗机会,这些机会在及时、准确、个性化和迅速采取行动时最有价值。3
摘要 简介 在初级保健中,家庭医生和全科医生的门诊就诊中几乎有 75% 涉及继续或开始药物治疗。由于门诊患者在无人监控的情况下使用了大量药物,因此由于用药或处方错误而导致不良事件的潜在风险远高于医院环境。人工智能 (AI) 应用可以通过改进错误检测、患者分层和药物管理来帮助医疗保健专业人员负责患者安全。目的是研究 AI 算法对初级保健环境中药物管理的影响,并将 AI 或算法与标准临床实践进行比较,以确定技术支持可以带来更好结果的药物领域。方法与分析 从开始到 2021 年 12 月,将通过查询 PubMed、Cochrane 和 ISI Web of Science 进行文献的系统评价和荟萃分析。主要结果是通过 AI 应用减少用药错误。搜索策略和研究选择将根据系统评价和荟萃分析的首选报告项目以及人群、干预、比较和结果框架进行。将采用非随机对照试验的观察队列和横断面研究的质量评估工具以及美国国立卫生研究院的随机对照试验的对照干预研究的质量评估来评估纳入研究的质量。道德与传播 由于不涉及人类,因此不需要正式的伦理批准。结果将通过同行评审的出版物广泛传播。
摘要 目的 尽管人工智能 (AI) 在医学中的作用得到越来越多的研究,但大多数患者并没有受益,因为大多数 AI 模型仍处于测试和原型环境中。临床 AI 模型的开发和实施轨迹复杂,缺乏结构化的概述。因此,我们提出了一个循序渐进的概述,以增强临床医生的理解并提高医学 AI 研究的质量。 方法 我们总结了开发和安全实施医学 AI 所需的关键要素(例如当前指南、挑战、监管文件和良好实践)。 结论 本概述对其他框架进行了补充,使利益相关者无需事先具备 AI 知识即可访问,因此提供了一种循序渐进的方法,其中包含实施所必需的所有关键要素和当前指南,从而有助于将 AI 从字节转移到床边。
引言 为了通过最大限度地减少身体接触来保护患者和医护人员,COVID-19 疫情极大地加速了许多医疗系统的数字化转型。1 医疗数字化转型的一个关键部分是开发和采用人工智能 (AI) 技术,这被视为国家卫生政策的优先事项。2 3 自 2015 年以来,使用机器学习的医疗器械获得监管部门批准的数量呈指数级增长,4 英国标准目前正在与国际标准一起制定。此外,还有更多的医疗 AI 技术不需要此类批准,因为它们不属于医疗器械的狭义定义。医疗 AI 的范围似乎无穷无尽,在成像和诊断、5 院前分诊、6 护理管理 7 和心理健康等一系列领域都报告了有希望的结果。8 但是,在解释此类研究中的说法时需要谨慎。例如,由于独立的前瞻性评估很少,深度学习算法有效性的证据基础仍然薄弱,且存在很高的偏见风险。9 这尤其成问题,因为这些技术的性能、可用性和安全性只有在现实环境中才能得到可靠的评估,在现实环境中,医疗工作者团队和人工智能技术通过合作和协作提供有意义的服务。10 然而,到目前为止,医疗保健人工智能的人为因素和人体工程学 (HFE) 研究很少。11 需要考虑整个社会技术系统的性能的人工智能设计和前瞻性评估研究,并且证据要求与风险水平成比例。12
COVID-19 疫情给世界带来了重大影响,各国都在努力控制病毒的传播及其造成的诸多后果,但成效参差不齐。为了控制一种行为和影响未知的新型传染源,必须能够近乎实时地访问和分析大量数据。一些国家做得比其他国家好,一个国家或地区的应对方式会显著影响疫情对人类的影响(请参阅在线补充附录,了解疫情的五条曲线)。例如,疫情早期的中心中国和意大利部署了基于人工智能 (AI) 的软件,利用肺部图像快速识别 COVID-19 患者,1 2 冰岛很早就对病例进行了测序,以了解传播情况。3
摘要 目标 迄今为止,医疗保健领域已经开发了许多人工智能 (AI) 系统,但采用程度有限。这可能是由于评估不适当或不完整以及缺乏国际公认的 AI 评估标准。为了对 AI 系统在医疗保健领域的通用性有信心并使其能够融入工作流程,需要一种实用而全面的工具来评估现有 AI 系统的转化方面。目前,医疗保健领域可用的 AI 评估框架侧重于报告和监管方面,但对于评估 AI 系统的转化方面(如功能、实用性和道德组成部分)几乎没有指导。 方法 为了解决这一差距并创建一个评估现实世界系统的框架,一个国际团队开发了一个以转化为重点的评估框架,称为“医疗保健 AI 的转化评估 (TEHAI)”。对文献的批判性回顾评估了现有的评估和报告框架和差距。接下来,使用健康技术评估和转化原则,确定了需要考虑的报告组件。由八名专家组成的国际小组对这些组件进行了独立审查,以达成共识,将其纳入最终框架。结果 TEHAI 包括三个主要组成部分:能力、实用性和采用。对模型开发和部署的转化和道德特征的强调使 TEHAI 有别于其他评估工具。具体而言,评估组件可应用于 AI 系统开发和部署的任何阶段。讨论 现有报告或评估框架的一个主要限制是其重点狭窄。由于 TEHAI 在转化研究模型方面有着坚实的基础,并且强调安全性、转化价值和通用性,因此它不仅具有理论基础,而且在评估现实世界系统方面也有实际应用。结论 用于开发 TEHAI 的转化研究理论方法不仅应应用于研究环境中临床 AI 的评估,还应更广泛地指导工作临床系统的评估。