致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、意大利帕维亚大学的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作
致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、帕维亚大学(意大利)的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作
摘要这项研究通过一种称为伪热的方法来研究虚拟现实中的体重感知,而没有来自现实世界的动力学反馈。这个虚幻的模型重点介绍了视觉输入和躯体形式反馈的解离,并试图通过操纵视觉输入来诱导VR用户中虚拟对象的负载的感觉。为此,可以对控制显示比(即手臂的真实和虚拟运动之间)进行修改,也可以用于对虚拟对象的位置产生视觉幻觉效果。因此,VR用户将其视为对象位移中的速度变化,从而帮助他们获得更好的虚拟权重感觉。本文的主要贡献是开发一种新颖的整体评估方法,该方法可以衡量虚拟现实环境中存在感,尤其是当参与者提高虚拟对象并体验其体重时。我们的研究研究了虚拟对象重量对参与者向上臂运动的运动学参数和速度曲线的影响,以及使用真实权重进行的平行实验。通过将真实对象与虚拟对象进行比较,可以深入了解参与者手臂运动中观察到的运动学特征的变化。此外,还进行了利用Borg CR10问卷的主观测量,以评估参与者对手部疲劳的看法。这种发现中的这种一致性强调了伪热反馈在模拟虚拟环境中逼真的体重感觉中的功效。对收集的数据(包括主观和客观测量)的分析得出的结论是,参与者在两个虚拟对象任务期间都经历了类似的疲劳感觉和手动运动学的变化,这是由伪热的反馈和实际举重提升任务产生的。
作家艾萨克·阿西莫夫于 1942 年首次在小说中提出了“机器人三定律”。1960 年,“半机械人”一词出现,用来描述同时具有人造和生物部分的想象中的生物。我自己在 1973 年创造的新词“神经插头兼容性”和“软接线”预测了未来由计算机软件驱动的人机神经互连和合成的发展。今天,人机脑接口半机械人实验和“大脑黑客”设备正在试用。人工智能 (AI) 驱动的数据分析软件的增长和“算法政府”实例的增加也揭示了这些进步基本上不受监管,法律框架不足。在最近的一篇文章中,我指出,随着法律程序和司法决策自动化越来越多地被讨论,RoboJudge 几乎已经到来;我还看出了卡斯特尔的第二句警示:“你不可能构建一种算法来可靠地决定任何算法是否合乎道德”。由于现有的法律和法理学要素很少,无法轻易映射到机器物种,任何新的“机器人法”都必须在一张白纸的基础上起草。此外,机器人法需要考虑到“机器物种”可以指具有自我意识和独特法律人格的物种,我在此将其命名为智能自主机器(“I.AM”)物种:我思故我在。本文通过制定 2021 年机器人法案草案的假定法律文本,制定了机器人法的基本条款(“FACL”),这是制定切实可行的机器人法的首次实质性尝试。这项工作仍在进行中,欢迎其他人参与贡献。
背景:跑步提供了许多健康益处,但不幸的是,与跑步相关伤害的高风险(RRI),尤其是由于过度使用而导致的。疲劳监测方法,例如心肺运动测试(CPET)和乳酸浓度测量,对现实世界跑步条件是有效的,但不切实际。可穿戴传感器与新型机器学习(ML)算法相结合,为在现实的室外设置中进行连续实时的实时疲劳监测提供了有希望的替代方案。方法:十九个休闲跑者参加了这项研究 - 在第一实验部分中的第一和五。他们完成了三个不同的室外跑步课程:耐力,间隔和5公里的跑步。参与者配备了七个惯性测量单元(IMU),上面放置在胫骨,大腿,骨盆,胸骨和手腕上,以及心率监测器和智能手表,以收集运动学和生理数据。在第二个实验部分期间,在每次运行期间在特定点上使用感知的劳累(RPE)量表(0到10)的BORG等级测量疲劳,而在第一个实验部分中未收集此类反馈。一种随机的森林回归算法对第二个实验部分的已加工标记数据进行了训练,以每隔1秒的时间预测RPE。该模型是使用嵌套的一项受试者(LOSO)交叉验证框架开发的,并通过随机搜索进行了超参数调整。此机器学习框架被应用于选定的IMU传感器组合,以优化实用性并减少传感器设置。从第一个实验部分,在未标记的数据集上进一步验证了这些传感器配置的最佳模型。结果:单传感器配置(手腕)在RPE预测中达到了最佳性能,平均均方根误差(MSE)为1.89。两传感器设置(大腿)的MSE为2.26,而三个以上的传感器设置(胫骨,大腿和骨盆)记录了2.44的最高MSE。MSE为2.16的整体配置并没有胜过腕部传感器。在所有传感器配置中,耐力试验中的性能最高,然后进行间隔和5 km试验,5公里的试验显示了准确的预测最低的预测。结论:手腕单传感器配置达到了最佳性能,表现优于更复杂的多传感器设置。这些发现表明,更多的传感器不一定提高预测准确性,尤其是在稳定节奏的耐力运行中。未来的研究应着重于扩大样本量,整合更多的生物识别数据,并针对金标准疲劳评估方法(例如肌电图(EMG)和VO2 Max)验证该系统。
Cyril Barbezang、Nathalie Bossuyt、Sarah Denayer、François Dufrasne、Sébastien Fierens 和 Melissa Vermeulen(比利时 Sciensano); Thomas Demuyser、Xavier Holemans、Benedicte Lissoir、Lucie Seyler、Els Van Nedervelde(比利时布鲁塞尔大学医院)、(比利时沙勒罗瓦大医院); Marieke Bleyen、Door Jouck、Koen Magerman(比利时杰萨医院)马克·布尔乔亚 (Marc Bourgeois)、本尼迪克特·德拉尔 (Benedicte Delaere)(比利时鲁汶天主教大学); Evelyn Petit、Marijke Reynders(比利时 Sint-Jan Bugge-Oostende 综合医院) Nicolas Dauby、Marc Hainaut(比利时圣皮埃尔天主教大学) Maja Ilić、Pero Ivanko、Zvjezdana Lovrić Makarić、Iva Pem Novosel、Goranka Petrović、Petra Smoljo、Irena Tabain(克罗地亚公共卫生研究所);黛安娜·诺科维奇(Diana Nonković)(克罗地亚斯普利特-达尔马提亚县公共卫生教学学院) Petr Husa、Lenka Součková(捷克布尔诺大学医院) Hana Orliková(捷克国家公共卫生研究所,NIPH)安娜·梅萨 (Anna Maisa)、伊莎贝尔·帕伦特 (Isabelle Parent)、西比勒·伯纳德-施托克林 (Sibylle Bernard-Stoecklin)(法国公共卫生部); Odile Launay、Zineb Lesieur、Liem Luong、Claire Rekacewicz、Yacine Saidi(法国 REIVAC); Silke Buda、Ralf Dürrwald、Ute Preuß、Janine Reiche、Kristin Tolksdorf、Marianne Wedde(德国罗伯特·科赫研究所); Annamaria Ferenczi、Krisztin J Horváth、Beatrix Oroszi(匈牙利塞梅维斯大学) Lisa Domegan、Róisín Duffy、Joan O’Donnell(爱尔兰卫生服务管理局健康保护监测中心); Giedre Gefenaite、Indrė Jonikaitė、Monika Kuliešė、Aukse Mickiene、Roberta Vaikutytė(立陶宛健康科学大学); Françoise Berthet、Ala'a Al Kerwi(卢森堡国家卫生局) Myriam Alexandre、Nassera Aouali、Guy Fagherazzi(卢森堡卫生研究所);马克·西蒙 (卢森堡中心医院); Maria-Louise Borg、John Paul Cauchi、Ausra Dziugyte、Tanya Melillo(马耳他卫生部); Verónica Gómez、Raquel Guiomar、Irina Kislaya、Ausenda Machado、Ana Paula Ambrosio Rodrigues(葡萄牙国立卫生研究院);米哈埃拉·拉扎尔 (Mihaela Lazar)、奥黛特·波波维奇 (Odette Popovici)(罗马尼亚坎塔库齐诺国家军事医学研究与发展研究所) Isabela Ioana Loghin(罗马尼亚雅西传染病临床医院和‘Gr. T. Popa’医药大学) Corneliu Petru Popescu(罗马尼亚布加勒斯特卡罗尔达维拉医药大学维克多巴贝斯传染病和热带病临床医院); SiVIRA 疫苗监测和有效性小组(西班牙急性呼吸道感染监测系统); Iván Martínez-Baz、Cristina Burgui、Itziar Casado Buesa、Jesús Castilla(纳瓦拉公共健康与劳动研究所 - IdiSNA - CIBERESP,西班牙)。
DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以便自动处理遥感数据。空间段和地面段的必要开发和实施已经在推进中。将开发用于获取增值产品的自动化处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),它是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,该演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。测试站点 DEMMIN 是一个密集使用的农业区,位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近(距柏林以北约 180 公里)。自 1999 年以来,DLR 与 Demmin 利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 到北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家农业有限责任公司组成,占地约 25,000 公顷农田。该地貌属于上一次更新世 (Pommersches stadium) 形成的北德低地。其特点是冰川河流沉积物和冰川湖沼沉积物以及反映在略微起伏的地貌中的冰碛。土壤基质以壤土和沙壤土为主,与纯沙斑或粘土区域交替出现。试验场的海拔高度约为 50 米,试验场东南部托伦塞河沿岸有一些坡度较大的山坡(12°)。年平均气温为 7.6 至 8.2°C。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。主要种植的作物是冬季作物,覆盖该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的调查提供了重要信息。例如,数字准静态数据(如土壤图、地块图)或数字动态数据(如产量图和应用图)。除了数据库之外,DEMMIN 还实现了农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。
DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以实现遥感数据的自动数据处理。空间段和地面段的必要开发和实施已经取得进展。将开发用于获取增值产品的自动处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),这是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。试验场 DEMMIN 是位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近的一个密集使用的农业区(距柏林以北约 180 公里)。自 1999 年以来,DLR 与德明利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 延伸至北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家有限和股份制农业公司组成,占地约 25,000 公顷农田。该景观属于上一个更新世时期形成的北德低地(Pommersches 体育场)。其特点是冰川河流和冰川湖沼沉积物以及反映在略微起伏的地形中的冰碛。年平均气温从 7.6 到 8.2°C 不等。例如,这些是土壤基质以壤土和沙壤土为主,与纯沙斑块或粘土区域交替出现。测试场地的海拔范围约为 50 米,测试场地东南部 Tollense 河沿岸有一些坡度相当大的山坡(12°)。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。种植的主要作物是冬季作物,覆盖了该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的研究提供了重要信息。数字准静态数据作为土壤图、地块图或数字动态数据作为产量图和应用图。除了数据库之外,DEMMIN 还实现了一个农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。
Cyril Barbezange、Nathalie Bossuyt、Sarah Denayer、François Dufrasne、Sébastien Fierens、Melissa Vermeulen(Sciensano,比利时); Thomas Demuyser、Xavier Holemans、Benedicte Lissoir、Lucie Seyler、Els Van Nedervelde(Universitair Ziekenhuis 布鲁塞尔,比利时)、(沙勒罗瓦大医院,比利时); Marieke Bleyen、Door Jouck、Koen Magerman(Jessa Ziekenhuis,比利时); Marc Bourgeois、Benedicte Delaere(比利时鲁汶天主教大学); Evelyn Petit、Marijke Reynders(Algemeen Ziekenhuis Sint-Jan Bugge-Oostende,比利时); Nicolas Dauby、Marc Hainaut(CHU 圣皮埃尔,比利时); Maja Ilić、Pero Ivanko、Zvjezdana Lovrić Makarić、Iva Pem Novosel、Goranka Petrović、Petra Smoljo、Irena Tabain(克罗地亚公共卫生研究所); Diana Nonković(克罗地亚斯普利特-达尔马提亚县公共卫生学院教学); Hana Orliková(捷克国家公共卫生研究所,NIPH); Anna Maisa、Isabelle Parent、Sibylle Bernard-Stoecklin、Sophie Vaux(法国 Santé Publique); Odile Launay、Louise Lefrançois、Zineb Lesieur、Liem Luong、Claire Rekacewicz、Yacine Saidi(I-REIVAC,法国); Silke Buda、Ralf Dürrwald、Ute Preuß、Janine Reiche、Kristin Tolksdorf、Marianne Wedde、Carolin Hackmann、Annika Erdwiens、Barbara Biere、Djin-Ye Oh(罗伯特·科赫研究所,德国); Gergő Túri、Krisztina J Horváth、Beatrix Oroszi(匈牙利 Semmelweis 大学); Lisa Domegan、Róisín Duffy、Margaret Fitzgerald、Joan O'Donnell(爱尔兰卫生服务主管健康保护监测中心); Giedre Gefenaite、Indrė Jonikaitė、Monika Kuliešė、Aukse Mickiene、Roberta Vaikutytė(立陶宛健康科学大学); Françoise Berthet, Ala'a Al Kerwi(卢森堡国家卫生局); Myriam Alexandre、Nassera Aouali、Guy Fagherazzi(卢森堡卫生研究所); Marc Simon(卢森堡中心医院); Maria-Louise Borg、John Paul Cauchi、Ausra Dziugyte、Tanya Melillo(马耳他卫生部); Verónica Gómez、Raquel Guiomar、Nuno Verdasca、Licínia Gomes、Camila Henriques、Daniela Dias、Ausenda Machado、Ana Paula Rodrigues(Instituto Nacional de Saúde Doutor,葡萄牙); Débora Pereira、Margarida Tavares(Unidade Local de Saúde de São João,葡萄牙); Paula Pinto、Cristina Bárbara(Unidade Local de Saúde de Lisboa Norte,葡萄牙); Odette Popovici(INSP 罗马尼亚)、Mihaela Lazar(“Cantacuzino”国家军事医学研究与发展研究所,罗马尼亚); Isabela Ioana Loghin(罗马尼亚雅西传染病临床医院和“Gr. T. Popa”医药大学); Corneliu Petru Popescu(罗马尼亚布加勒斯特卡罗尔·达维拉医药大学维克多·巴贝斯传染病和热带病临床医院博士); Grupo SiVIRA de vigilancia y efectividad vacunal (isciii.es)(西班牙急性呼吸道感染监测系统);伊万·马丁内斯·巴兹、卡米诺·特罗巴霍·桑马丁、艾齐贝尔·埃切维里亚、伊齐亚尔·卡萨多·布埃萨、Jesús Castilla (Instituto de Salud Pública y Laboral de Navarra – IdiSNA – CIBERESP,西班牙); Ana Navascués、Miguel Fernández-Huerta、Carmen Ezpeleta(纳瓦拉大学医院 - IdiSNA,西班牙)。
为什么加拿大制造的Laribee吉他好? Laribee吉他于1968年在加拿大多伦多开始制造,并于1977年搬到加拿大环太平洋沿岸的不列颠哥伦比亚省维多利亚,创造了我们独特的吉他。声音使用来自高森林的优质云杉和雪松。 当它于 20 世纪 70 年代末传入日本时,其高品质令人惊叹,并获得了想要像 Martin 和 Gibson 那样细腻声音的用户的支持。精美的镶嵌作品是Larrivee吉他的特色之一,是由Gene Larrivee的妻子Wendy创作的。今天十年级的情况仍然如此。 20 世纪 70 年代末,包括他的妻子 Wendy 在内的 8 名工匠每月生产约 30 瓶葡萄酒。 这一时期的吉他据说是Laribee的黄金时代,抵达日本的少数10级吉他售价超过了Martin的D-45。我想可以说,这为Somogi这样的手工吉他今天被日本乐迷所接受奠定了基础。 除了产品的质量和声音的质量之外,还应该考虑民族主义的方面。虽然他们的销量不如Martin和Gibson,但他们很早就在努力表达自己的加拿大特色,并且一直讲究在加拿大生产产品。他们融入了当时不符合美国时尚的东西,例如“木质装订”、“制作精美的玫瑰花饰”、“透明护板”和“具有欧洲文艺复兴风格的镶嵌设计”。这种叛逆精神吸引了那些厌倦了美国文化消极方面(例如越南战争和全球化)的人们。有一个轶事,在吉他发展的早期,一位美国自由主义音乐家在听到有关Laribee吉他的谣言后,在多伦多的街道上徘徊,寻找一把Laribee吉他。 2001 年 9 月,Larrivee 搬迁至加利福尼亚州的一家新工厂,以进一步扩张。由于美国市场是他们最大的客户,该公司自然希望降低出口成本。然而,这让粉丝们非常失望,他们认为这是一把值得骄傲的加拿大吉他,而不是前面提到的美国吉他,这一事实是有意义的。日本粉丝也是如此。如果您想要一把来自美国西海岸的吉他,泰勒吉他就足够了。未能立即提高加州工厂的质量也增加了现有粉丝的失望。 目前,创始人吉恩·拉里维(Gene Larrivee)、他的妻子温迪(Wendy)、次子马修(Matthew)和女儿克里斯汀(Christine)在加利福尼亚州的一家工厂工作。长子吉恩·拉里维 (Gene Larrivee Jr.) 负责加拿大温哥华的工厂。独自留在加拿大的他对于在工厂度过的时光有何感想? 我无从了解他个人的挣扎,但他回应了我的评论“加拿大制造的10级吉他很好”,并为《LAST GUITAR》的开场制作了一把吉他,我不禁认为有。这不仅仅是简单地接受请求。熟练的工匠在一条单独的生产线上工作。 是的,我想他想证明这一点。自豪地在加拿大制造。第一批已经到了。使用温迪的镶嵌物,图案为留在加拿大的阿拉丁和神灯精灵,以及 AAA 级核心。