• Verma R, Dr. Ranjith V, Dr. H. K. Shivanand, Dr. Tukaram Jadhav, Puneeth P, “Studies on Tensile Property and Microstructure Behaviour of Boron Carbide and CNT Reinforced Copper based Hybrid Composites” , International Journal for Research in Applied Science & Engineering Technology (IJRASET), ISSN: 2321-9653; IC值:45.98;第9卷V 2021年5月。
Shamsiya Shams 和 B. Bindhu * 摘要 二维氮化硼在能源转换和存储的发展趋势中具有广泛的应用。能源行业因其多功能性而迅速发展,利用了新技术发展的各种应用。更加注重二维氮化硼扩展的机械强度和柔韧性,这种材料优先用于柔性太阳能电池的开发,这反过来又使得构建轻量级和便携式能源解决方案成为可能。二维氮化硼在超级电容器和电池中的储能应用是有趣的结构候选。由于其巨大的表面积,它能够容纳客体离子,因此它有潜力用作电极材料,加速储能设备的循环和速率。此外,其化学稳定性对电池和超级电容器的寿命有积极影响,因为它可以减少电极的氧化或结垢,从而确保更长的使用寿命。此外,二维氮化硼膜具有出色的离子选择性和渗透性,是燃料和电解质电化学合成的有希望的候选材料。本文详细介绍了二维氮化硼,它是一种用于增强转化和储能技术的多功能材料,使其成为该领域的杰出材料,这将在未来带来更高效、更耐用、更环保的能源解决方案。
在靠近工厂土地边界的上层蓄水层地下水中,地表以下 55 至 130 英尺深处检测到了高浓度的硼。该成分可能已从 EEI 土地上移出,并且可能在工厂东部和东南部的地下水中发现或未发现高浓度的硼。
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
德克萨斯州休斯顿 — 5E Advanced Materials, Inc. (Nasdaq: FEAM) (ASX: 5EA)(“5E”或“公司”)是一家硼和锂公司,其 5E Boron Americas (Fort Cady) 综合设施被美国政府指定为关键基础设施,已与 Estes Energetics 签署了一份不具约束力的意向书(“LOI”),合作生产用于固体火箭发动机的硼先进材料,以支持美国航天和军事工业。根据意向书的条款,5E 和 Estes 将努力达成一项具有约束力的协议,以供应用于制造固体火箭发动机点火器的硼先进材料。5E 和 Estes Energetics 还将考虑进行更广泛的合作,重点是合作生产设施、业务开发活动和共享技术知识,以开发针对太空和军事应用的硼先进材料和专有知识产权。根据意向书的条款,Estes Energetics 使用的硼先进材料与美国政府最近的举措和计划相一致,因为它们对军事弹药和民用应用至关重要,而且由于海外供应集中和美国对进口的依赖,存在供应风险。Estes Energetics 是一家国防和工业公司,为政府和商业客户研究、设计、制造、测试和集成固体推进剂火箭发动机、能量学、关键化学品和相关技术。它将实用推进解决方案开发与先进的航空航天研究和开发结合在一个团队下。Estes Energetics 在科罗拉多州彭罗斯和路易斯安那州明登设有工程、制造和测试设施。Estes Energetics 是从 Estes Industries 剥离出来的,后者是模型火箭领域的世界领导者,拥有 60 多年的固体推进剂火箭发动机生产经验。5E 首席商务官 Dino Gnanamgari 博士在评论与 Estes Energetics 的意向书时指出:
硼是硼中子俘获疗法中不可缺少的成分,经三次ICP-MS测定,DOX-CB中硼的含量为4.79%±0.16%(图S6)。以上实验结果证实DOX-CB是由DOX与CB通过多种分子间力作用而形成的复合物,但新的空间结构的形成是否会影响DOX的荧光特性尚不清楚。在此,我们检测了DOX、CB以及DOX-CB的紫外吸收峰。如图S7所示,DOX在480nm处有明显的吸收峰,而CB在整个实验波长范围内没有吸收峰。取480nm作为DOX的最大吸收波长,简单物理混合后的DOX和CB的紫外吸收光谱与DOX的光谱几乎相同。
完整作者列表:Ozen,Melis;科克大学科学与工程研究生院;科克大学硼与先进材料应用与研究中心 Yahyaoglu,Mujde;科克大学科学与工程研究生院;科克大学硼与先进材料应用与研究中心 Candolfi,Christophe; Jean Lamour 研究所,Veremchuk,Igor;马克斯普朗克固体化学物理研究所,凯撒,菲利克斯;马克斯普朗克固体化学物理研究所、化学金属科学 Burkhardt,Ulrich; MPI CPfS,化学冶金学 Snyder,G.;西北大学,材料科学 Grin,Yuri; MPI CPfS,化学金属科学 Aydemir,Umut;科克大学化学系,化学;科克大学硼与先进材料应用与研究中心
简介 - 对超智材料的改造的兴趣不仅是由科学的古怪驱动的,而且是由于几种工业应用中的技术兴趣越来越多[1,2]。钻石据报道,维克(Vicker)的硬度(V H)为120 GPA,迄今为止所有已知材料的记录都持有记录,但其在高温下的化学反应性和高生产成本限制了其实际可用性。对当前替代方案的改进,例如立方-BN(C-BN)或Cubic-BC 2 N [3-5]和金属硼化物[6-8],它们也呈现出严重的限制问题,例如高综合价格或有限的硬度,都在强烈寻求。硼,碳,氮和氧及其化合物等元素的相图代表了一个理想的狩猎场,可以通过Ab-Initio方法来探索潜在的超级材料的晶体结构预测(CSP)和高通量(HT)屏幕(HT)屏幕,这是快速扩展物质研究的范围[2-15-15-15]。在本文中,将晶体结构预测(最小值)[16,17]和高吞吐量筛查技术结合在一起,与硼碳(B-C)相图相结合,我们发现了一个新的型亚稳态硼和硼含量的碳结构的新家族,并与这些杂种富含碳纤维相比。硼化物。[18]术语所建议的融合的硼苯融合可以看作是通过共价键相连的2D硼层的不同类型的堆叠,形成了3D散装结构。在以下内容中,讨论了超智融合的一般elastic和热力学特性与高压α-GA相结构相关,被认为是在160 GPA以上的硼中观察到的最有可能解释的候选者[19-21],FBS理想地代表了两个已知的硼结构家庭缺失的联系:2d Boron Monoo-and Boron-Mono-and Borayers和Boryers(Boryers(Boropheres)(boropheres)(boropheres)[22- bor bulk and bore)[22-2-2-2-2-2-2-2-2-2-2-2-2-2-4]二十面体单元,例如α,β和γ硼[23,25,26] FBS在环境条件下可稳定,但是我们的计算表明,从高压中进行淬火可以用来稳定一些最有竞争力的阶段。
单位-7 p-块元素(第13组和第14组元素):P-块元素的一般简介,电子构型,发生,性能的变化,氧化态的变化以及第13组和14组化学反应性的趋势。第13组:硼:硼化合物的物理和化学特性:硼氧化物,硼酸,硼酸盐和B 2 H 6铝:Al与酸和碱的反应,使用Al的使用,lialh 4和Al 2 O 3的使用和使用,并使用lialh 4和Al 2 O 3。Group 14: Carbon: catenation, allotropic forms, nano carbon, graphene, physical and chemical properties of two oxides of carbon- CO and CO 2 , Silicon: some compounds of silicon and their important uses – Silicon tetrachloride (Structure, preparation, hydrolysis and reduction reaction only), silicates [structure of open chain silicates constructing of (SiO ଷ ) ଶି ions], use of沸石,
目的:基于纳米材料的药物递送系统,允许有效地将小分子化学果靶向肿瘤的靶向递送,从而彻底改变了癌症治疗。最近,作为具有出色物理化学特性的新型纳米材料,氮化硼纳米球(BNS)已成为有前途的药物递送候选人。但是,分散性差和靶向肿瘤的缺乏严重限制了进一步的应用。在这项研究中,为靶向抗癌药物递送而设计了癌细胞 - 膜仿生BN。方法:从HeLa细胞(HM)提取的细胞膜用于通过物理挤出来封装BN。阿霉素(DOX)作为模型药物加载到HM-BNS上。结果:细胞膜涂料具有出色的分散性和细胞相容性。药物释放曲线表明,DOX@HM-BNS对酸性pH值有反应,从而导致DOX迅速释放。由于癌细胞膜的同源靶向,揭示了HeLa细胞的DOX@HM-BN的细胞摄取。cck8和活/死测定表明,由于自选择性的细胞摄取,dox@hm-bns对HeLa细胞具有更强的细胞毒性。最后,使用HELA肿瘤模型进行的抗肿瘤研究表明,DOX@HM-BNS具有比游离DOX或DOX@BNS更有效的肿瘤抑制作用。结论:这些发现表明,新开发的HM-BN有望成为有效的肿瘤选择性药物用于肿瘤治疗的载体。关键词:氮化硼纳米球,癌细胞膜,靶向药物递送,化学疗法,仿生