1标题:海洋沉积铀与钡比作为2更新世底部水氧浓度的潜在定量代理3 4作者:5 Kassandra M. Costa 1; Sune G. Nielsen 1,2; Yi Wang 1,2; Wanyi Lu 1; Sophia K. V. Hines 3; 6 Allison W. Jacobel 4,5; Delia W. Oppo 1 7 8隶属关系:9 1伍兹洞海洋学机构,伍兹孔海洋学机构,伍兹10洞,马萨诸塞州,美国,美国11 2 Nirvana Laboratories,Woods Hole Oceanographic Institution,伍德斯海洋学会,马萨诸塞州伍兹洞,美国马萨诸塞州12 3 3 3 3 3海洋化学和地球化学系美国VT,美国15 5地球,环境和行星科学系,布朗大学,美国RI 16号,美国16号,17 18联系人:19 Kassandra M. Costa; kassandra.costa@whoi.edu 20 21摘要22 23氧气对海洋生态系统至关重要,并且通过呼吸与深海中的碳储存24相关。过去重建氧气浓度受到25个缺乏定量而不是定性代理的限制,但是最近已经开发了几种新的(半)26个定量氧气代理。在这项研究中,我们通过将其标准化为28(BA)来探讨了将大量沉积铀(U)添加到此列表中的27种可能性。首先,在全球尺度上比较了u/ba和底部水氧浓度,使用核心顶部数据库,在大于200 m的水深度中,使用核心顶部数据库进行了比较。35 U/BA的氧气重建通常与先前36个发表的烯酮保存和底栖有孔虫的表面孔隙率记录的氧气相一致。然后,30在较小的空间31量表上,U/BA和底部水氧之间的关系进行了检查:在每个海洋盆地内,在赤道太平洋,32阿拉伯海和西方赤道大西洋的东部区域内。在此区域量表上,次要33对U和BA行为的影响可能在空间上更均匀,经验34分段线性校准得以开发,随后在Downcore Records上进行了测试。也已经确定了U/BA作为氧气代理的效用的几个局限性。代理38仅应在包含39硫酸盐的硫酸盐的最上层间隔中应用,以最大程度地减少稀释岩成岩的成岩作用,并且应监测磷含量的40个潜在影响磷灰石对铀含量的潜在影响。u/ba在平均冰川和冰川间期间与气候42转变期间记录41个氧气浓度更为成功,当时的时间和振幅可能对燃烧和43平滑。对校准的保守误差导致44个区域U/BA的最大效用,其氧气浓度相对较高(例如,> 50 µ mol/kg)和较大的氧45个变异性(±10s µ mol/kg)。即使使用这些注意事项,u/ba也是两个定量的46氧气代理之一,可能能够记录高于50 µ mol/kg的可变性,而另外47个研究在48个努力中对其在不同环境环境中的功能进行了研究,可以在过去的48个努力中重建过去的氧气浓度的整个氧气浓度。
Bering10k区域海洋建模系统(ROMS)模型是一种高分辨率(10公里)的区域海洋模型,在过去十年中,它在研究和管理环境中都用于研究物理环境与东部白令海货架生态系统之间的关系。以前已经对该模型进行了广泛的验证,尤其是专注于底温度,这是一个关键的物理驱动器,塑造了该区域的生态系统动力学。但是,先前对底温度的观察主要仅限于夏季。最新的弹出式浮球的部署能够越冬测量值,现在使我们可以将先前的验证扩展到其他季节。在这里,我们通过将新的弹出式片段中的数据与几个现有温度数据集相结合,从而在时间尺度上表征了东南白令海架上的底温度。然后,我们使用这种数据组合来系统地评估Bering10K ROM模型捕获这些功能的技能,重点是技能指标的空间变异性以及导致这些模式的潜在过程。我们确认该模型在底部温度井中捕获了整个架子的模式,包括平均模式以及季节性和年际变化。然而,还确定了一些潜在改进的领域:模型中低估的表面混合会导致中间和外部架子上的延迟破坏性,模型中内部前部的位置可能会稍微偏移,而在模型中,估计平滑的平滑性会导致较差的代表性差,可能是在货架上脱落的范围,并通过
欧洲底部捕鱼联盟(EBFA)欢迎卡迪斯专员在海洋保护区(MPAS)内对底部拖网的平衡方法。在最近的讲话1中,专员强调了一项基于科学的战略在平衡生物多样性保护与可持续捕鱼实践之间的重要性。EBFA特别鼓励他专注于量身定制的评估和逐案评估,以确保决策是由证据而不是广泛假设驱动的。这种合理的方法长期以来由EBFA提倡,可以防止在当前和新的环境立法(例如《自然恢复法》》等新的环境立法下封闭捕捞区域。
围绕数字行业的环境影响的意识使众多专业人员将这些考虑因素纳入了他们的工作。但是,环境影响的概念化通常已缩小到碳足迹的范围。此限制可以归因于各种技术和数据可访问性限制,从而阻碍了全面的评估,包括对数字技术整个生命周期的多标准分析。响应这些局限性,我们采用了一种适用于服务器和云实例的全面自下而上的评估方法,采用生命周期思维方法。我们首先根据服务器的硬件配置对生命周期的影响进行建模。然后,我们将它们与其技术和物理环境的影响汇总在一起,以定义云平台的影响。我们最终将云实例作为云平台的一部分建模。该建议的方法已作为开源工具包实施,并以API的形式出版。这项计划旨在为De-Velopers和研究人员提供基于开放数据和开放方法的基础设施进行环境评估的工具,从而增强了其探索ICT产品,服务,服务和基础设施的环境物质性的能力。
4 请注意,方程 (7) 中的最大算子被选择用来表示在增加的剩余需求为负的情况下的可再生能源削减,即可再生能源馈入量超过需求和可能的存储充电的总和。这个公式意味着,削减波动的可再生能源是防止供应过剩的最终控制。因此,它反映了许多立法中赋予可再生能源的优先调度。然而,这也意味着这种削减是免费的。
1 绿色农药国家重点实验室、教育部绿色农药与农业生物工程重点实验室、贵州大学精细化工研发中心,中国贵阳,2 美国佛罗里达大学柑橘研究与教育中心昆虫学与线虫学系,佛罗里达州阿尔弗雷德湖,美国,3 开罗大学理学院昆虫学系,埃及吉萨,4 伊苏布里亚大学生物技术与生命科学系,意大利瓦雷泽,5 BAT 中心-生物启发农业环境技术校际研究中心,那不勒斯费德里科二世大学,意大利那不勒斯,6 西华师范大学西南野生动植物资源保护教育部重点实验室,中国南充,7 法国雷恩大学 CNRS,ECOBIO(生态系统、生物多样性、进化),UMR 6553,雷恩,法国,8 生物多样性与生态系统动力学研究所(IBED),进化生物学和种群生物学,阿姆斯特丹大学,荷兰阿姆斯特丹,9 伊利诺伊大学生物科学系,美国伊利诺伊州芝加哥和
科学的底部拖网调查是沿着大陆货架和海洋和海洋的斜坡进行的生态观察计划,这些计划采样了与海底相关的海洋社区。这些调查报告了时空的发生,丰度和/或体重的发生,并有助于渔业管理以及人口和生物多样性研究。底部拖网调查是在世界各地进行的,代表了了解海洋生物地理,宏观生态学和全球变化的独特机会。但是,将这些数据结合在一起以进行跨生态系统分析仍然具有挑战性。在这里,我们提供了一个综合数据集,该数据集由29个公开可获得的底段调查,在18个国家/地区的国家水域进行了标准化和预处理,总共涵盖了2,170个采样的鱼类分类单元,并从1963年至2021年收集了216,548次拖船。我们描述了创建数据集,标志和标准化方法的处理步骤,我们开发了这些方法,以帮助用户使用稳定的区域调查足迹进行时空分析。该数据集的目的是在全球变化的背景下支持研究,海洋保护和管理。
作者:克拉拉菜单1,Laure Pecquerie 2,Cedric Bacher 3,Mathieu Doray 4,Tarek Hattab 5,5 Jeroen van der Kooij 6,Martin Huret 1 1 1 1解(生态系统动力学和可持续性) 6539 CNRS/UBO/IRD/IFREMER,LEMAR-IUEM,PLOUZANé,法国,10 3 Ifremer,Dyneco,dyneco,f-29280,法国Plouzané,法国4解码(生态系统动力学和可持续性)法国Sète的Ifremer和Ird 6环境,渔业和水产养殖科学中心,Lowestoft,英国,英国15通讯作者:Clara菜单,clara.menu@ifremer.fr,Ifremer Center Bretagne LBH,29280Plouzané20
氧气通过在呼吸过程中加速电子的转移来帮助生物产生能量。由于呼吸,微生物和海床的土壤动物自然释放二氧化碳。在有许多动物和有机碳的栖息地中,您通常具有海床的总呼吸(动物 +细菌)和高CO 2排放/排放。这种排放量最高,在海底的上层中,氧气大量存在,并且较高的温度加快了溶解的速度。在富含有机物质的细小沉积物中,氧气通常仅穿透表面下的1 mm。没有氧气,某些微生物仍然可以破坏有机碳,但是该过程要慢得多。如果干扰将有机碳暴露于氧气中,它将更快地分解为Co 2。
简介:自上而下的机制调节注意力控制,受任务需求和个人目标的影响,而自下而上的过程则受显著刺激的影响。类似的网络参与了这两个过程(例如,额叶纹状体区域)。然而,它们受到刺激的情绪显著性的影响不同,而情绪显著性决定了注意力的分配。本研究旨在确定最近的疫情经历是否继续对认知过程产生影响。为此,本研究将确定与负面和中性刺激相比,对疫情相关刺激的注意力偏见。此外,本研究将调查疫情相关刺激是否影响自上而下和自下而上的注意力过程,以及后者是否影响以心率变异性 (HRV) 为指标的自主神经控制。