因子:一种因素,如微生物、化学物质或辐射形式,其存在、过量存在或(在缺乏疾病中)相对缺失对于疾病的发生至关重要。厌氧菌:在缺氧条件下生长最好的生物。专性厌氧菌只能在缺氧条件下生长。分析流行病学:流行病学中寻找与健康相关的原因和影响的方面。使用提供基线数据的比较组来量化暴露与结果之间的关联,并检验有关因果关系的假设。分析研究:旨在识别和量化关联、检验假设和识别原因的比较研究。两种常见类型是队列研究和病例对照研究。抗毒素:含有针对特定毒素的抗体并中和毒素作用的药物。注射抗毒素并不总能使患者完全康复,因为抗毒素(如肉毒杆菌抗毒素)可能只与循环毒素结合,而不与已经与组织结合的毒素结合。 关联:两个或多个事件、特征或其他变量之间的统计关系。 发病率:发病率的一种变体,适用于在有限时间内观察到的狭义人群,例如在流行病期间。 B 条形图:变量不同类别大小的直观显示。变量的每个类别或值都用一个条形表示。 偏差:结果或推论与事实的偏差,或导致此类系统偏差的过程。数据收集、分析、解释、发布或审查过程中的任何趋势都可能导致得出与事实有系统差异的结论。 生物传播:传染源的间接媒介传播,其中病原体在传播给新宿主之前在媒介内发生生物学变化。沸腾:沸腾发生在 100 C(或 212 F)。C 携带者:没有明显疾病的人或动物,但携带特定传染源并能够将传染源传播给他人。携带者状态可能发生在
2. DailyMed 和 DrugBank 链接 D. 未列入 2020 年草案名单的药物 1. 2018 年 2 月提出但未添加到 2020 年草案名单的药物 2. 卡介苗 (BCG) 3. 肉毒杆菌毒素 E. 要求从名单中删除的特定药物 1. Blinatumomab 2. 卡非佐米 3. 依斯利卡西平、洛美他派、米非司酮 4. 列出的对生殖和发育有影响的危险药物:卡麦角林、氯硝西泮、氟康唑、普乐沙福、利奥西呱和齐拉西酮 5. 艾替班特 6. 亮丙瑞林 7. 奥拉帕尼和特立氟胺 8. 催产素和其他催产药物 9. 帕罗西汀 10. 螺内酯 11.托吡酯 12. 乌利司他 13. 维加巴特 F. 列表中具体药物的位置 1. 卡非佐米 2. 达沙替尼和伊马替尼 3. 艾日布林 4. 艾塞那肽 5. 更昔洛韦和缬更昔洛韦 6. 激素药物:戈舍瑞林、地加瑞克、亮丙瑞林、雌激素和孕酮 7. 霉酚酸酯和霉酚酸 8. 西罗莫司和其他相关 mTOR 靶向药物 9. 沙利度胺、来那度胺和泊马度胺 10. 凡德他尼 G. 具体药物的分类/识别 1. 曲普瑞林 2. Ziv-阿柏西普、Ado-曲妥珠单抗 Emtansine、Fam-曲妥珠单抗 Deruxtecan H. 建议的文字编辑 IV. NIOSH 对 2024 年 1 月《联邦公报》通知中的公众意见和同行评审的回应以及关于拟议从名单中删除利拉鲁肽和帕妥珠单抗的评论请求 A. 公众意见 1. 一般意见 2. 利拉鲁肽 3. 帕妥珠单抗 a. 这是评估接触帕妥珠单抗可能性的合适方法吗? b. 羊水过少是评估的最佳健康影响吗?如果不是,应评估哪些其他健康影响以及原因? c. 针刺伤是医护人员唯一合理的接触途径吗? d. 关于在医疗环境中接触帕妥珠单抗的量的假设是否合理? i. 吸入 ii. 经皮暴露 iii. 口服暴露 e. 对于单克隆抗体,可以考虑哪些替代方法来表征对工人的潜在危害?
1。Pires DP,Melo LDR,Azeredo J.了解生物膜群落中复杂的噬菌体 - 宿主相互作用。病毒学年度审查。2021; 8:73–94。doi:10.1146/annurev-病毒学-091919-074222 2。Bond MC,Vidakovic L,Singh PK,Drescher K,Nadell CD。基质捕获的病毒可以通过定植细胞来防止细菌生物膜侵袭。Shou W,Storz G,Shou W,编辑。Elife。 2021; 10:e65355。 doi:10.7554/elife.65355 3。 BrüssowH,Hendrix RW。 噬菌体基因组学:小是美丽的。 单元格。 2002; 108:13–16。 doi:10.1016/s0092-8674(01)00637-7 4。 lwoff A.溶因子。 Bacteriol Rev. 1953; 17:269–337。 5。 Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。 自然。 2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。Elife。2021; 10:e65355。doi:10.7554/elife.65355 3。BrüssowH,Hendrix RW。噬菌体基因组学:小是美丽的。单元格。2002; 108:13–16。 doi:10.1016/s0092-8674(01)00637-7 4。 lwoff A.溶因子。 Bacteriol Rev. 1953; 17:269–337。 5。 Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。 自然。 2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2002; 108:13–16。doi:10.1016/s0092-8674(01)00637-7 4。lwoff A.溶因子。Bacteriol Rev.1953; 17:269–337。5。Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。自然。2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2003; 424:741–741。doi:10.1038/424741a 6。Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。氰化物编码的肽畸形酶的结构和功能。isme J.2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2013; 7:1150–1160。doi:10.1038/ismej.2013.4 7。Allison GE,Verma nk。shigella flexneri中的血清型转换噬菌体和O-抗原修饰。微生物学的趋势。2000; 8:17–23。doi:10.1016/s0966- 842x(99)01646-7 8。Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。抗生素(巴塞尔)。2021; 10:279。doi:10.3390/ant antibiotics10030279 9。Waldor MK,Mekalanos JJ。通过编码霍乱毒素的丝状噬菌体转化。科学。1996; 272:1910–1914。 doi:10.1126/science.272.5270.1910 10。 O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。 shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。 科学。 1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1996; 272:1910–1914。doi:10.1126/science.272.5270.1910 10。O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。 shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。 科学。 1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。科学。1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1984; 226:694–696。doi:10.1126/science.6387911 11。Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。Groman NB。通过corynephages及其在白喉自然历史中的作用。J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。J HYG(Lond)。1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1984; 93:405–417。12。Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。肉毒杆菌C1神经毒素的核苷酸序列。核酸res。1990; 18:4924。
1迈克尔·奥克帕拉农业大学食品科学技术系,Umudike,P.M.B。7267,尼日利亚阿比亚州乌米亚州。2尼日利亚巴耶尔萨州Yenagoa国际旅游与酒店研究所的酒店管理和技术部(食品科学技术部门)。通讯作者电子邮件:ananaunyimeabasie@yahoo.com于2024年1月14日收到; 2024年2月20日接受;发表于2024年3月4日摘要:研究研究了汤的多样性,逆转温度和时间如何影响f₀,从而测量罐装过程中的热渗透和灭菌。在玻璃容器中煮熟,瓶装和灭菌,两种著名的尼日利亚尼日利亚美味佳肴,Egusi和Ogbono汤。这项研究的目的是确定热加工条件和汤品种如何影响汤的灭菌程度,以方便起见,而没有冷藏量就会影响更长的保质期。使用常规成分和程序制成汤,然后将其倒入玻璃罐中,并在110°C至121°C的温度下进行消毒60至90分钟。使用位于罐中心的热电偶测量玻璃罐假定的最慢的加热区域的汤的热量吸收。根据温度和时间组合,将汤分批量化。使用周期性温度和热吸收测量来计算该过程的F₀。在大多数灭菌方案中,F₀范围从1.0494到40.1739分钟,Egusi汤显示出更快的热量吸收和更大的F₀。(2024)。直接res。J. Agric。 卷。J. Agric。卷。要确保肉毒杆菌煮在汤中,需要在至少115°C的情况下加热加热。仅灭菌温度显着(p <0.05)影响了灭菌程度,f₀。线性模型显着描述了F₀数据,具有可接受的R²(0.8579),Adjecr²(0.8275),Predr²(0.7653)(0.7653)和足够的精度(12.7227)。F₀模型可能是为罐装土著汤的撤回条件的可靠指南。关键字:汤,玻璃罐头,热加工,灭菌,热量渗透,f fucity:Anana,U.E.,Onwuka,G。I.,Obasi,N。E.和Irechukwu,F。I.过程变量对灭菌值的影响,玻璃罐装本地汤的F₀。食品科学。12(1),pp。83-91。 https://doi.org/10.26765/drjafs99875657。 本文根据创意共享归因许可4.0的条款发表。 在非洲引言,食用多叶蔬菜的最常见方法是将它们用于准备汤。 绿叶蔬菜的利用是非洲文化遗产的一部分,因为它们在非洲家庭的习俗,传统和饮食文化中起着重要作用(Sanusi和Olurin,2012)。 汤占据了尼日利亚房屋中饮食的重要组成部分(Bamidele等人 ,2017年)。 对即食和的需求不断增长83-91。 https://doi.org/10.26765/drjafs99875657。本文根据创意共享归因许可4.0的条款发表。在非洲引言,食用多叶蔬菜的最常见方法是将它们用于准备汤。绿叶蔬菜的利用是非洲文化遗产的一部分,因为它们在非洲家庭的习俗,传统和饮食文化中起着重要作用(Sanusi和Olurin,2012)。汤占据了尼日利亚房屋中饮食的重要组成部分(Bamidele等人,2017年)。对即食和
《医疗机构消毒和灭菌指南 2008》由 William A. Rutala 等人编写。该指南概述了医疗保健专业人员在各种环境中(包括医院、门诊和家庭护理)使用消毒剂和灭菌产品的方法。它为不同类型的物品提供了建议,包括关键、半关键和非关键表面以及设备和仪器。该指南涵盖的主题包括:* 术语定义* 消毒和灭菌方法* 关键、半关键和非关键物品* 自 1981 年以来消毒和灭菌的变化* 医疗设备的消毒* 实施 Spaulding 方案的担忧* 内窥镜和其他器械的再处理* 艰难梭菌和其他新出现的病原体的灭活* 抗生素耐药细菌对消毒剂的敏感性* 表面、空气和微生物污染* 影响消毒和灭菌效果的因素该指南还讨论了各种消毒产品,包括氯化合物、甲醛和酒精,以及它们的作用方式。医疗设施消毒和灭菌方法概述:循证建议指南。该文件概述了清洁、消毒和灭菌患者护理医疗设备以及清洁和消毒医疗环境的首选方法。此处给出文章文本 灭菌与消毒:了解医疗保健环境中的差异 灭菌是一种使用压力蒸汽或干热等方法完全消除所有形式的微生物生命的过程。然而,一些医疗专业人士错误地使用“灭菌”来描述消毒,这涉及消除无生命物体上除细菌孢子以外的许多或所有病原微生物。消毒可以通过各种因素实现,包括液体化学品、湿式巴氏灭菌和用于较短暴露时间的杀菌剂。消毒的有效性受多种因素的影响,例如之前的清洁、微生物污染的类型和程度、杀菌剂的浓度以及物体的物理性质。与灭菌不同,消毒不是杀孢子剂,这意味着它不能通过一次使用杀死细菌孢子。然而,一些消毒剂可以有效对抗孢子,但需要长时间暴露。消毒有不同的级别,包括低级、中级和高级消毒,它们杀死微生物的能力各不相同。清洁是高水平消毒和灭菌之前必不可少的步骤,因为表面上的有机和无机物质会影响这些过程的有效性。净化可去除物体上的病原微生物,使物体可以安全处理或丢弃。抗菌剂通常仅用于无生命物体。防腐剂通常用于皮肤,而不是用于表面消毒,而消毒剂不用于皮肤消毒,因为它们可能会损害皮肤和其他组织。各种类型的抗菌剂,如杀病毒剂、杀真菌剂、杀细菌剂、杀孢子剂和杀结核剂,都可以消除其前缀所示的特定微生物。例如,杀细菌剂是一种杀死细菌的药剂。Earle H. Spaulding 于 30 多年前开发了一种合理的消毒和灭菌方法,根据使用过程中的感染风险将患者护理物品和设备分为关键、半关键和非关键类别。这种分类方案已被感染控制专业人员广泛采用和改进。如果关键物品被任何微生物污染,则会带来很高的感染风险。这些物品包括进入无菌组织或血管系统的物体,例如手术器械、心脏和尿道导管、植入物以及在无菌体腔中使用的超声波探头。大多数关键物品应以无菌形式购买或使用蒸汽或其他方法灭菌。半关键物品接触粘膜或破损皮肤,包括呼吸治疗和麻醉设备、某些内窥镜和其他医疗器械。这些物品需要使用化学消毒剂进行高水平消毒,以消除除少量细菌孢子外的所有微生物。FDA 批准使用过氧化氢酸作为高水平消毒剂,前提是满足某些因素。在为患者护理物品选择消毒剂时,还应考虑长期使用后的化学兼容性。高水平消毒可消除除细菌孢子以外的所有微生物,并在清洁后防止感染传播。腹腔镜和关节镜等进入无菌组织的设备最好在患者之间进行灭菌,但由于设计复杂性,美国有时也会使用高水平消毒。适当的清洁先于高水平消毒或灭菌。虽然灭菌是较新型号的首选,但目前尚未发布有关这些内窥镜在经过适当清洁和消毒后进行高水平消毒的疫情报告。用无菌水冲洗内窥镜可防止残留消毒剂引起的不良影响,也可以使用自来水或过滤水冲洗,然后用酒精冲洗并强制风干。以保护性的方式干燥和储存物品可防止其再次受到污染。水疗池等非关键表面使用中级消毒剂进行消毒,建议对吹嘴和肺量计管进行高水平消毒,但根据过去的研究,清洁肺量计的内表面被认为没有必要。每次治疗患者时,都要更换使用过的过滤器和近端吹嘴,以防止过滤器远端受到污染。非关键物品与完整皮肤接触但不与粘膜接触,由于其具有天然的微生物屏障,因此无需灭菌。非关键患者护理物品的例子包括便盆、血压袖带和计算机。这些物品通常可以在使用时就地进行消毒,而不必运送到中央处理区。低水平消毒剂(例如在环境保护署 (EPA) 注册的消毒剂)已被证明可有效对抗一系列微生物,包括细菌、酵母菌、分枝杆菌和病毒。但是,必须遵循制造商的使用说明,包括暴露时间和稀释比。非关键环境表面(例如床栏和床头柜)也可能藏有微生物,这些微生物可通过手接触或污染医疗设备传播。通常使用拖把和可重复使用的清洁布对这些表面进行消毒,但它们通常需要定期清洁和消毒以防止污染扩散。建议经常清洗拖把,并使用浸有消毒剂的一次性毛巾对非关键表面进行局部清洁。自 1981 年制定以来,CDC 环境控制指南经历了重大变化。首先,由于甲醛-酒精毒性大、使用量低,因此不再将其作为推荐的化学灭菌剂或高效消毒剂。增加了过氧化氢、过乙酸及其组合等新化学灭菌剂。3% 酚类和碘伏对细菌孢子和真菌的功效有限,因此被从高效消毒剂中删除。异丙醇和乙醇被排除在高效消毒剂之外,因为它们无法灭活细菌孢子和亲水性病毒。 1:16 稀释的戊二醛-苯酚-苯酚钠被取消了作为高效消毒剂的资格,因为它缺乏杀菌、杀真菌、杀结核和杀孢子活性。高效消毒所需的暴露时间已增加到 12 分钟或更长,具体取决于 FDA 批准的标签声明和科学文献。该指南现在包括新的主题,例如新出现的病原体、生物恐怖分子、血源性病原体的灭活以及内窥镜等复杂医疗器械的消毒。医疗机构消毒指南(包括 Spaulding 方案的实施)引起了人们对过度简化的担忧,因为它在处理复杂医疗设备和某些传染性病原体方面存在局限性。这些物品不能进行蒸汽灭菌,因为它们对热敏感;此外,使用环氧乙烷进行灭菌对于患者之间的常规使用来说太耗时了。但是,缺乏证据表明对这些物品进行灭菌可以改善患者护理。许多较新的型号可以承受蒸汽灭菌,这是关键物品的首选方法。实施 Spaulding 方案的一个问题是处理与接触无菌身体组织的关键器械一起使用的半关键器械,如内窥镜。例如,用于上消化道检查的内窥镜在与无菌活检钳一起使用时或用于食管静脉曲张大量出血的患者时不应被视为半关键物品。提供高水平消毒并去除细菌孢子以外的微生物,该设备不代表感染风险。尚未有报告称内窥镜经过适当的高水平消毒后会感染产孢细菌。另一个问题是,高水平消毒的最佳接触时间尚未确定或因专业组织而异,导致对半关键物品的消毒策略不同。在找到更简单有效的替代方案之前,遵循本指南和 CDC 指南是明智之举。医生使用内窥镜诊断和治疗多种疾病,但尽管与使用内窥镜相关的感染发病率很低,但与受污染的内窥镜相关的医疗相关疫情比与任何其他医疗设备相关的疫情都要多。为防止医疗相关感染的蔓延,所有热敏内窥镜在每次使用后都必须妥善清洁并进行高水平消毒。高水平消毒可以消灭所有微生物,尽管当微生物数量较多时,可能会有少数孢子存活。柔性内窥镜在每次使用过程中都会受到高水平的微生物污染,生物负荷水平从 105 到 1010 CFU/mL 不等。清洁可将微生物污染水平降低 4-6 log10。研究表明,彻底清洁可消除内窥镜中的微生物污染 104,105。同样,其他研究人员发现,只有在正确清洁设备后,环氧乙烷灭菌或浸泡在 2% 戊二醛中 20 分钟才有效 106,13,14。FDA 医疗机构消毒和灭菌指南 (2008) 强调使用清除的液体化学灭菌剂和高水平消毒剂来再处理柔性内窥镜等热敏感医疗设备的重要性。目前,FDA 批准的配方包括 >2.4% 戊二醛、0.55% 邻苯二甲醛 (OPA) 和其他具有已证实抗菌活性的配方。然而,一些氧化化学物质会损坏内窥镜,这突显出用户需要咨询设备制造商有关杀菌剂兼容性的信息。使用 FDA 批准的产品,建议使用戊二醛或使用过氧乙酸的自动液体化学灭菌工艺。美国胃肠内镜学会 (ASGE) 建议不要使用含表面活性剂的戊二醛溶液,因为冲洗时残留物会很困难 108。邻苯二甲醛已成为许多医疗机构中戊二醛的替代品,具有无刺激和减少暴露监测等优点。未经 FDA 批准的消毒剂,包括碘伏、氯溶液、酒精、季铵化合物和酚类,应强烈反对使用,因为缺乏经过证实的功效或材料不相容。鉴于本文文本坚持既定规则导致了与胃肠内窥镜 (8) 和支气管镜 (7)、(12) 相关的感染。向 FDA 设备和放射健康中心报告任何与设备相关的问题至关重要。一项调查发现,即使在消毒和灭菌程序完成后,71 个胃肠内窥镜内部通道的细菌培养物中仍有近 24% 的细菌生长过多,其中 9 个机构使用市场上不再提供的产品(6 个使用 1:16 戊二醛苯酚盐)或未经 FDA 批准的高效消毒剂。与手动再处理相比,自动内窥镜再处理器具有多项优势,包括步骤自动化和标准化、减少错过必要步骤的风险以及减少人员接触消毒剂或灭菌剂。然而,AER 故障与感染爆发 (7)、(133) 或定植 (134) 有关。此外,AER 水过滤系统可能无法提供可靠的“无菌”冲洗水 (135)、(136)。正确建立 AER 和设备之间的连接器对于消毒剂和冲洗水的完全流动至关重要。有些内窥镜需要使用 2 至 5 毫升注射器进行手动再处理,例如具有升降线通道等功能的十二指肠镜,需要大多数 AER 无法达到的冲洗压力。涉及可拆卸部件的疫情 (138)、(139) 强调了在高水平消毒或灭菌之前进行清洁的重要性。一些阀门现在可用作一次性或蒸汽灭菌产品,而 AER 和内窥镜需要进一步开发以防止成为传染源。带有一次性组件的内窥镜可能为传统化学消毒/灭菌提供替代方案。新技术包括可吞咽的相机,可传输小肠的彩色图片。为确保正确再处理,应严格遵守已发布的指南 (12)、(38)、(108)、(113-116)、(145-148)。不幸的是,审计显示人员并未始终遵守再处理指南 (149-151),疫情仍在继续发生 (152-154)。负责再处理内窥镜器械的每位人员都必须接受初始和年度能力测试。用液体化学灭菌剂对内窥镜进行消毒或灭菌的过程包括泄漏测试后的五个步骤:1.清洁:机械清洁内外表面,包括刷内部通道和用水和洗涤剂或酶清洁剂冲洗每个通道。2.消毒:将内窥镜浸入高效消毒剂(或化学灭菌剂)中,确保接触所有可触及的通道,如抽吸/活检和空气/水通道。3.冲洗:用无菌水或过滤水冲洗内窥镜和所有通道,然后用酒精擦干插入管和内通道后再存放。以防止再污染和促进干燥的方式存放内窥镜,如垂直悬挂。干燥对于降低冲洗水中的微生物再污染风险至关重要。一项研究表明,再处理后的内窥镜在强制空气循环下垂直存放时通常不会滋生细菌。其他研究发现,所有内窥镜在经过高水平消毒后均无菌,后续评估中只有少数内窥镜呈阳性。所有冲洗样品均保持无菌。虽然一些研究人员建议仅使用无菌水或过滤水,因为自来水中存在微生物,但已发表的指南和科学文献支持使用自来水,然后用酒精冲洗并强制风干。此外,遵循此方案时未发现疾病传播的证据。一项研究发现过滤后的冲洗水是细菌污染的来源,但引入热水冲洗管道系统可降低阳性培养的频率。当医务人员将内窥镜放在推车上时,可能不清楚它们是否已正确清洁。一些指南建议在使用前对某些内窥镜进行再处理,而其他指南则不建议。专业组织普遍认为,只有在原始过程正确的情况下才应进行再处理。为了确保质量,一些机构会对处理后的内窥镜进行随机细菌测试。再处理的内窥镜除了少量无害微生物外,不应含有细菌。尽管指南建议定期检测最终冲洗水,但尚未建立标准检测方法。此外,没有证据表明对再处理后的内窥镜或其冲洗水进行常规培养可以预防感染。对内窥镜和水进行取样涉及评估消毒剂的有效性和清洁程序。还探索了评估内窥镜清洁的新方法。然而,没有一种方法被广泛接受为标准。内窥镜不应存放在与受污染仪器接触过的便携箱中。这些手术箱必须定期清洁和处理,以防止再次污染。定期进行感染控制巡查和遵守政策对于预防患者感染至关重要。腹腔镜和关节镜周围的感染控制实践仍存在争议,一些人主张将高水平消毒作为最低标准,而另一些人则建议将灭菌作为首选方法。高水平消毒的支持者指出,会员调查和机构经验表明感染风险较低(0.2% 过氧乙酸。相反,浓度为 1000 ppm 有效氯的二氯异氰尿酸钠在 10 分钟时对艰难梭菌孢子的 log10 减少因子较低。OSHA 的血源性病原体标准要求在接触血液或其他潜在传染性物质后使用消毒剂清洁和净化设备和表面。该标准强调了 EPA 注册的消毒剂的重要性,特别是那些标明对 HIV 和 HBV 有效的消毒剂。然而,1997 年,OSHA 修改了其政策,在满足某些条件的情况下考虑在非血液污染的表面使用 EPA 注册的消毒剂。研究表明,对于大量血液溢出,建议使用 1:10 的 EPA 注册次氯酸盐溶液进行最终稀释,以最大限度地降低清理过程中因经皮肤损伤而感染的风险。新兴病原体如隐孢子虫、幽门螺杆菌、大肠杆菌 O157:H7、轮状病毒、人乳头瘤病毒、诺如病毒和严重急性呼吸道综合征 [SARS] 冠状病毒等受到日益关注。此处给出文章文本已研究了各种病原体对化学消毒剂和灭菌剂的敏感性。大多数新兴病原体都对目前可用的化学品敏感,但也有一些例外。小隐孢子虫对氯和医疗保健中使用的大多数常见消毒剂具有抗性,包括乙醇、戊二醛和次氯酸盐。然而,过氧化氢可以灭活大于 3 log10 的 C. parvum。蒸汽、EtO 和过氧化氢气体等离子体等灭菌方法可以完全灭活 C. parvum。其他病原体,如大肠杆菌 O157:H7,通常对消毒剂敏感。研究表明,低浓度(1 ppm)的氯可在 1 分钟内消除约 4 log10 的大肠杆菌。电解氧化水也可有效降低大肠杆菌的活力。使用季铵化合物、酚类和次氯酸盐可显著降低大肠杆菌水平。研究表明,含氯化合物的消毒剂可有效对抗接种在苜蓿种子或芽苗以及牛肉胴体表面的大肠杆菌。研究了消毒剂对抗幽门螺杆菌的有效性,结果表明乙醇(80%)和戊二醛(0.5%)具有很强的杀菌作用。然而,有机物的存在会降低某些消毒剂(如聚维酮碘和次氯酸钠)的功效。研究了各种方法对抗幽门螺杆菌和其他病原体的功效。用肥皂和水清洗无法消除内窥镜中的幽门螺杆菌,浸泡在乙醇或甲醇中也无法消除。但是,用 2% 戊二醛消毒可有效消除细菌。一些研究发现,某些消毒剂(如酚类和季铵化合物)在使用后一分钟内即可有效对抗轮状病毒。一项人体挑战研究表明,含有乙醇和苯酚的消毒喷雾可有效阻断轮状病毒从受污染表面转移到指腹。然而,关于酒精或其他消毒剂对抗 HPV 或诺如病毒的有效性的信息有限,因为这些病毒不能在组织培养中生长。环境表面消毒不当被认为是导致诺如病毒传播的原因。研究发现,FCV(猫杯状病毒)对各种消毒剂敏感。氯、戊二醛和碘基产品可有效灭活病毒,而季铵化合物、洗涤剂和乙醇则无法完全消灭病毒。稀释至 1000 ppm 有效氯的漂白剂可在一分钟内将 FCV 传染性降低 4.5 个对数。其他有效的消毒剂包括加速过氧化氢、二氧化氯、四种季铵化合物的混合物以及乙醇和季铵化合物的组合。发现季铵化合物可在 10 分钟内对抗硬表面上的干燥 FCV 悬浮液。70% 的乙醇和 70% 的 1-丙醇可在 30 秒内将 FCV 降低 3-4 个对数。CDC 宣布,一种以前未知的人类冠状病毒是 SARS 的主要假设,它可导致胃肠炎。研究已经调查了化学杀菌剂对冠状病毒的杀病毒功效。经研究发现,次氯酸钠、70% 乙醇和聚维酮碘在接触一分钟后即可有效对抗冠状病毒 229E。聚维酮碘已被证实可有效对抗人类冠状病毒 229E 和 OC43。70% 乙醇和聚维酮碘在一分钟内可完全灭活 SARS 冠状病毒,2.5% 戊二醛在五分钟内也可完全灭活 SARS 冠状病毒。由于 SARS 冠状病毒在室温下至少可稳定存在一到两天,因此表面可能成为污染源,应进行消毒。应使用 EPA 注册的消毒剂或 1:100 稀释的家用漂白剂和水进行表面消毒。对于已知或疑似 SARS 患者,无需改变半危及和危及医疗设备的高水平消毒和灭菌方法。处理阿米巴原虫污染时,高水平消毒的暴露时间至关重要,因为如果处理不当,阿米巴原虫污染会促进感染305。如果这些微生物存在于器械上,可能需要延长浸泡时间或使用其他消毒剂来防止进一步传播。鉴于对生物恐怖主义的担忧,出版物强调了与生物制剂相关的风险306、307。CDC 已将几种可迅速传播、导致高死亡率并引发公众恐慌和社会混乱的高优先级病原体归类308。这些病原体包括炭疽芽孢杆菌(炭疽)、鼠疫耶尔森氏菌(鼠疫)、天花、肉毒梭菌毒素(肉毒中毒)、土拉弗朗西斯菌(土拉菌病)、丝状病毒(埃博拉出血热、马尔堡出血热)和沙粒病毒(拉沙[拉沙热]、胡宁[阿根廷出血热])308。关于灭菌和消毒在生物恐怖主义中的作用,可以注意到这些药剂对杀菌剂的敏感性与其他相关病原体相似309。例如,天花与牛痘相似,而炭疽杆菌与萎缩芽孢杆菌相似312。这表明人们可以从现有的遗传相似生物数据中推断。此外,许多生物恐怖剂在环境中很稳定,使受污染的表面或污染物成为潜在的传播源315。此外,在评估可能接触生物恐怖剂的患者时,目前的消毒和灭菌实践似乎适合管理患者护理设备和环境表面310。虽然次氯酸钠对表面消毒有效,但在发生生物恐怖袭击时可能需要特殊程序311。工程生物恐怖剂对消毒和灭菌过程不太敏感的可能性在理论上令人担忧309。与化学品接触相关的风险涉及多种因素,包括接触时间、强度和途径。这可能导致急性或慢性毒性。急性毒性通常是由于化学物质意外泄漏而发生的,导致突然接触,可能需要紧急救治。另一方面,慢性毒性是由于长期接触较低浓度的化学品而引起的。雇主有责任告知工人潜在的危害并实施控制措施。职业安全与健康管理局 (OSHA) 要求危险化学品制造商提供材料安全数据表 (MSDS),可能接触到这些材料的员工必须随时可以获取。许多与医疗保健相关的化学品都设定了接触限值,OSHA 公布的限值具有法律效力。这些限值通常表示为 8 小时工作日和 40 小时工作周的时间加权平均值。例如,环氧乙烷 (EtO) 的允许暴露极限 (PEL) 为 8 小时平均 1.0 ppm。美国疾病控制中心国家职业安全与健康研究所 (NIOSH) 建议的暴露极限 (REL) 可在整个工作寿命内保护工人的健康和安全。这些准则还考虑了皮肤影响和全身吸收,这些吸收可能在暴露极限以下并通过皮肤接触而不吸入而发生。有效使用消毒剂对于各种环境中的患者安全至关重要。化学消毒剂可以在处理前用亚硫酸氢钠或甘氨酸等化学品中和。然而,这种方法存在毒副作用和再污染等风险。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保安全的患者环境。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可用洗涤剂清洗,而血液溢出应根据 OSHA 规定处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。一次性物品也可以使用,可重复使用的物品可以在医院消毒。一些环保组织提倡使用“环保”产品替代商业杀菌剂。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保患者环境的安全。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可以使用洗涤剂进行清洁,而血液溢出应根据 OSHA 规定进行处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。也可以使用一次性物品,可重复使用的物品可以在医院进行消毒。一些环保组织提倡使用“环保”产品作为商业杀菌剂的替代品。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保患者环境的安全。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可以使用洗涤剂进行清洁,而血液溢出应根据 OSHA 规定进行处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。也可以使用一次性物品,可重复使用的物品可以在医院进行消毒。一些环保组织提倡使用“环保”产品作为商业杀菌剂的替代品。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站可作为可靠的信息来源。实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站可作为可靠的信息来源。